ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ハイパフォーマンスコンピューティング(HPC)
  3. 2023
  4. 2023-HPC-192

Optimizing Matrix Multiplication on Arm Architectures

https://ipsj.ixsq.nii.ac.jp/records/231081
https://ipsj.ixsq.nii.ac.jp/records/231081
dede5f25-d744-45a9-8653-d7940d56e11e
名前 / ファイル ライセンス アクション
IPSJ-HPC23192003.pdf IPSJ-HPC23192003.pdf (434.9 kB)
 2025年11月28日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, HPC:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-28
タイトル
タイトル Optimizing Matrix Multiplication on Arm Architectures
タイトル
言語 en
タイトル Optimizing Matrix Multiplication on Arm Architectures
言語
言語 eng
キーワード
主題Scheme Other
主題 アーキテクチャ
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tokyo Institute of Technology/RIKEN Center for Computational Science
著者所属
National Institute of Advanced Industrial Science and Technology (AIST)/RIKEN Center for Computational Science
著者所属
Tokyo Institute of Technology
著者所属
RIKEN Center for Computational Science
著者所属
RIKEN Center for Computational Science
著者所属(英)
en
Tokyo Institute of Technology / RIKEN Center for Computational Science
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology (AIST) / RIKEN Center for Computational Science
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
RIKEN Center for Computational Science
著者所属(英)
en
RIKEN Center for Computational Science
著者名 Du, Wu

× Du, Wu

Du, Wu

Search repository
Peng, Chen

× Peng, Chen

Peng, Chen

Search repository
Toshio, Endo

× Toshio, Endo

Toshio, Endo

Search repository
Satoshi, Matsuoka

× Satoshi, Matsuoka

Satoshi, Matsuoka

Search repository
Mohamed, Wahib

× Mohamed, Wahib

Mohamed, Wahib

Search repository
著者名(英) Du, Wu

× Du, Wu

en Du, Wu

Search repository
Peng, Chen

× Peng, Chen

en Peng, Chen

Search repository
Toshio, Endo

× Toshio, Endo

en Toshio, Endo

Search repository
Satoshi, Matsuoka

× Satoshi, Matsuoka

en Satoshi, Matsuoka

Search repository
Mohamed, Wahib

× Mohamed, Wahib

en Mohamed, Wahib

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper presents armGEMM, a novel approach aimed at enhancing the performance of irregular General Matrix Multiplication (GEMM) operations on popular Arm architectures. Designed to support a wide range of Arm processors, from edge devices to high-performance CPUs. armGEMM optimizes GEMM by intelligently combining fragments of auto-generated micro-kernels, incorporating hand-written optimizations to improve computational efficiency. We optimize the kernel pipeline by tuning the register reuse and the data load/store overlapping. In addition, we use a dynamic tiling scheme to generate balanced tile shapes, based on the shapes of the matrices. We build armGEMM on top of the TVM framework where our dynamic tiling scheme prunes the search space for TVM to identify the optimal combination of parameters for code optimization. Evaluations on five different classes of Arm chips demonstrate the advantages of armGEMM. In most cases involving irregular matrices, armGEMM outperforms state-of-the-art implementations like LIBXSMM, LibShalom, OpenBLAS, and Eigen.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper presents armGEMM, a novel approach aimed at enhancing the performance of irregular General Matrix Multiplication (GEMM) operations on popular Arm architectures. Designed to support a wide range of Arm processors, from edge devices to high-performance CPUs. armGEMM optimizes GEMM by intelligently combining fragments of auto-generated micro-kernels, incorporating hand-written optimizations to improve computational efficiency. We optimize the kernel pipeline by tuning the register reuse and the data load/store overlapping. In addition, we use a dynamic tiling scheme to generate balanced tile shapes, based on the shapes of the matrices. We build armGEMM on top of the TVM framework where our dynamic tiling scheme prunes the search space for TVM to identify the optimal combination of parameters for code optimization. Evaluations on five different classes of Arm chips demonstrate the advantages of armGEMM. In most cases involving irregular matrices, armGEMM outperforms state-of-the-art implementations like LIBXSMM, LibShalom, OpenBLAS, and Eigen.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10463942
書誌情報 研究報告ハイパフォーマンスコンピューティング(HPC)

巻 2023-HPC-192, 号 3, p. 1-9, 発行日 2023-11-28
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8841
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:53:02.382252
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3