ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2022
  4. 2022-MPS-139

A new Ensemble Framework based on MOEA/D

https://ipsj.ixsq.nii.ac.jp/records/218934
https://ipsj.ixsq.nii.ac.jp/records/218934
656dcd37-f6b7-44f0-b4cc-6d439c33911d
名前 / ファイル ライセンス アクション
IPSJ-MPS22139007.pdf IPSJ-MPS22139007.pdf (437.8 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-07-19
タイトル
タイトル A new Ensemble Framework based on MOEA/D
タイトル
言語 en
タイトル A new Ensemble Framework based on MOEA/D
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Muroran Institute of Technology
著者所属
Muroran Institute of Technology
著者所属(英)
en
Muroran Institute of Technology
著者所属(英)
en
Muroran Institute of Technology
著者名 Jiayi, Han

× Jiayi, Han

Jiayi, Han

Search repository
Shinya, Watanabe

× Shinya, Watanabe

Shinya, Watanabe

Search repository
著者名(英) Jiayi, Han

× Jiayi, Han

en Jiayi, Han

Search repository
Shinya, Watanabe

× Shinya, Watanabe

en Shinya, Watanabe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Multi-objective evolutionary algorithm based on decomposition (MOEA/D) is a powerful algorithm and provides a framework for solving multi-objective optimization problems (MOPs). Differential evolution (DE) algorithm and its variants are often used to generate new solutions in MOEA/D heuristically. However, based on the “No Free Lunch” theory, only a fixed algorithm for generating new solutions in the original MOEA/D cannot efficiently solve all MOPs. Therefore, in this paper, we propose a new framework based on MOEA/D named MOEA/D-EF (Ensemble Framework), which can contain a variety of new-solutions generating algorithms (candidate algorithms) with different search capabilities to improve the overall universality of the algorithm. In the new approach, the whole iteration is divided into the evaluation generation (EG) and the implementation generation (IG). We provide a fair evaluation environment for each candidate algorithm at the beginning of each generation belonging to the EG and evaluate their performance by using the Hypervolume indicator. The algorithm with the best performance in one EG will be chosen and executed in the following IG. Also, we believe that some historical information representing evolutionary details can help generate superior new solutions. Thus, in numerical experiments, we take our original DE variant based on the ideal point and historical information as one of the candidate algorithms for generating new solutions. The numerical experiments show that the new framework has broader universality.
論文抄録(英)
内容記述タイプ Other
内容記述 Multi-objective evolutionary algorithm based on decomposition (MOEA/D) is a powerful algorithm and provides a framework for solving multi-objective optimization problems (MOPs). Differential evolution (DE) algorithm and its variants are often used to generate new solutions in MOEA/D heuristically. However, based on the “No Free Lunch” theory, only a fixed algorithm for generating new solutions in the original MOEA/D cannot efficiently solve all MOPs. Therefore, in this paper, we propose a new framework based on MOEA/D named MOEA/D-EF (Ensemble Framework), which can contain a variety of new-solutions generating algorithms (candidate algorithms) with different search capabilities to improve the overall universality of the algorithm. In the new approach, the whole iteration is divided into the evaluation generation (EG) and the implementation generation (IG). We provide a fair evaluation environment for each candidate algorithm at the beginning of each generation belonging to the EG and evaluate their performance by using the Hypervolume indicator. The algorithm with the best performance in one EG will be chosen and executed in the following IG. Also, we believe that some historical information representing evolutionary details can help generate superior new solutions. Thus, in numerical experiments, we take our original DE variant based on the ideal point and historical information as one of the candidate algorithms for generating new solutions. The numerical experiments show that the new framework has broader universality.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2022-MPS-139, 号 7, p. 1-4, 発行日 2022-07-19
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:59:03.895138
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3