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Abstract: Multi-objective evolutionary algorithm based on decomposition (MOEA/D) is a powerful algorithm and provides a 

framework for solving multi-objective optimization problems (MOPs). Differential evolution (DE) algorithm and its variants are 

often used to generate new solutions in MOEA/D heuristically. However, based on the ‘‘No Free Lunch’’ theory, only a fixed 

algorithm for generating new solutions in the original MOEA/D cannot efficiently solve all MOPs.  

Therefore, in this paper, we propose a new framework based on MOEA/D named MOEA/D-EF (Ensemble Framework), which 

can contain a variety of new-solutions generating algorithms (candidate algorithms) with different search capabilities to improve 

the overall universality of the algorithm. In the new approach, the whole iteration is divided into the evaluation generation (EG) 

and the implementation generation (IG). We provide a fair evaluation environment for each candidate algorithm at the beginning 

of each generation belonging to the EG and evaluate their performance by using the Hypervolume indicator. The algorithm with 

the best performance in one EG will be chosen and executed in the following IG.  

Also, we believe that some historical information representing evolutionary details can help generate superior new solutions. 

Thus, in numerical experiments, we take our original DE variant based on the ideal point and historical information as one of the 

candidate algorithms for generating new solutions. The numerical experiments show that the new framework has broader 

universality. 
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1. Introduction  

As one of the current state-of-the-art multi-objective 

evolutionary algorithms, Multi-objective Evolutionary Algorithm 

Based on Decomposition (MOEA/D) [1] provides a framework 

for solving MOPs. In MOEA/D, a set of evenly weight vectors in 

the objective space is used to decompose one MOP into multiple 

subproblems. For each of the subproblems, scalarization function 

(such as Weighted Sum Approach or Tchebycheff Approach) and 

weight vectors are used to coordinate each objective function's 

relationship, and each subproblem can be considered as a scalar 

optimization problem. Since that, it is natural to use genetic 

evolution algorithms those were originally designed to solve 

single-objective optimization problem such as the Differential 

Evolution (DE) [2] algorithm and its variants to generate new 

solutions.  

Due to different parameter selection strategies, the DE 

algorithm and its variants exhibit different search capabilities, 

which can be described as exploitation and exploration. 

Exploration is the process of visiting entirely new regions of a 

search space, while exploitation is visiting those regions within 

the neighborhood of previously visited points [3]. However, 

according to the ‘‘No Free Lunch’’ theory, it is difficult for one 

new-solutions generating algorithm to exhibit both exploitation 

and exploration capabilities.  

To efficiently solve the optimization problem through 

evolutionary computation, in this paper, we propose a new 

Ensemble Framework based on MOEA/D(MOEA/D-EF), which 

can contain a variety of new-solutions generating algorithms with 

different search capabilities and has a mechanism to switch 

new-solutions generating algorithms by the current search 

situation.  

We inherit part of the idea from HMJCDE [4] and MVC [5] 
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framework. However, most similar attempts are designed for 

single-objective optimization problems. Different from that, one 

of the critical problems of multi-objective optimization is how to 

balance the relationship between multiple objective functions. 

Even though the MOEA/D framework can import modified 

single-objective optimization algorithms, it is necessary to use a 

comprehensive indicator for evaluating a multi-objective 

optimization algorithm. Thus, the Hypervolume indicator, widely 

used in solving MOPs, is introduced for switching candidate 

algorithms in our approach.  

In addition, we strongly believe that not only the current 

population, but also the past population should have the 

information that can contribute to the evolution. In this paper, we 

also propose a DE variant with historical items. We named the          

new variant as DE-IDEAL, because the historical item satisfies   

the geometric relation with respect to the ideal point in MOEA/D.                         

Since our motivation is to improve the universality of the 

overall algorithm, we expect candidate algorithms to have 

different search capabilities. Although, in theory, our new 

approach can contain any number of different new-solutions 

generation algorithms. In the current study, we chose the classic 

DE algorithm, JADE [6] with applicable modification, and 

DE-IDEAL for numerical experiments.  

2. DE-IDEAL 

A well-known DE variant with the mutation strategy 

DE/best/1 is defined as:  of  

        𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹 ⋅ (𝑋𝑏𝑒𝑠𝑡
𝐺 − 𝑋𝑟1

𝐺 )            (1) 

where 𝑋𝑏𝑒𝑠𝑡
𝐺  is best solution in G generation, and 𝑋𝑟1

𝐺  is 

randomly selected from the current population 𝑁. In MOEA/D 

framework, 𝑋𝑖
𝐺  always has a minimum fitness-value to 𝜆𝑖  in 

neighborhood 𝐵(𝑖), and 𝑋𝑟1
𝐺  should be randomly selected from 

the neighborhood 𝐵(𝑖),  the mutation strategy of DE-IDEAL 

should be modified as:  
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    𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹 ⋅ (𝑋𝑖
𝐺 − 𝑋𝑟1

𝐺 ) + 𝐹′ ⋅ 𝐻𝑖         (2) 

where 𝐻𝑖 is a historical vector with the form as same as 𝑋𝑏𝑒𝑠𝑡
𝐺  

 
or 𝑋𝑟1

𝐺  in the design space, and randomly selected from set 

（𝐻̃𝑖 ∈ 𝐻𝐼𝑃）.  

 Historical information pool (set 𝐻𝐼𝑃) is used to store 

historical details. Specifically, when the parent individual 𝑋𝑖
𝐺  is 

successfully replaced by its child 𝑋𝑖
𝐺+1, 𝑉̃ = 𝑋𝑖

𝐺+1 − 𝑋𝑖
𝐺  will 

be append to set 𝐻𝐼𝑃. To be clear, 𝑉̃ is a vector with the same 

form as 𝑋𝑖
𝐺  and 𝑋𝑖

𝐺+1 in the design space, but it also represents 

the vector 𝑉̃` = 𝐹(𝑋𝑖
𝐺+1) − 𝐹(𝑋𝑖

𝐺) in the objective space. 𝐻𝐼𝑃 

can hold as many items as the population size 𝑁. If the number 

of items in 𝐻𝐼𝑃 reaches 𝑁, the item which was first added to 

𝐻𝐼𝑃 will be removed, and the new 𝑉̃ will be added in. 𝐻̃𝑖 is a 

subset of 𝐻𝐼𝑃, and the corresponding 𝑉̃` of 𝑉̃ in 𝐻̃𝑖  should 

satisfy certain geometric relations in the objective space.  

 We assume an individual 𝑋𝑖
𝐺 , and its position in the 

objective space is shown in Fig. 1. Ideally, it would be alluring 

for individual 𝑋𝑖
𝐺  to approach the ideal point strictly in the 

opposite direction of the weight vector 𝜆𝑖. Still, the reality is that 

there is usually some distance between individual 𝑋𝑖
𝐺  and the 

weight vector 𝜆𝑖. We expect that the individual 𝑋𝑖
𝐺  to be in the 

position of 𝑋`𝑖
𝐺 , because 𝑋`𝑖

𝐺  is closer to the weight vector 𝜆𝑖 

and closer to the ideal point than 𝑋𝑖
𝐺 , simultaneously. The key to 

getting from 𝑋𝑖
𝐺  to 𝑋`𝑖

𝐺  is to find a vector represents 𝑋`𝑖
𝐺 − 𝑋𝑖

𝐺 . 

Let 𝑉̃` = 𝑋`𝑖
𝐺 − 𝑋𝑖

𝐺 ,
 

𝑉̃` must satisfy two conditions: 

⚫ Based on simple geometry,  ∠𝑉𝐼𝑊(the angle from −𝑉̃` 

to 𝜆𝑖) must bigger than ∠𝑋𝐼𝑊 (the angle from 𝑋𝑖
𝐺  to 

𝜆𝑖). Xi
G and 𝑋`𝑖

𝐺  represent a positional relationship in the 

   

objective space, and the red dotted arrow represents the 

vector 𝑣`. It is important to note that vectors 𝑋𝑖
𝐺 , 𝑋`𝑖

𝐺 , and 

𝜆𝑖 here all start from ideal point. 

⚫ ∠𝑉𝐼𝑋 (the angle from −𝑉̃` to 𝑋𝑖
𝐺) must be less than a 

threshold 𝜃`. Because an oversize ∠𝑉𝐼𝑋 will still lead 

𝑋`𝑖
𝐺  closer to the weight vector 𝜆𝑖 but it will take 𝑋`𝑖

𝐺  

further away from the ideal point. 

3. The Ensemble Framework 

Based on MOEA/D 

Penalty-based boundary intersection (PBI) approach was 

used as the scalarization function in our current study, which can 

decompose a MOP into several subproblems (scalar optimization 

subproblems) as the following consideration: 

minimize  𝑔𝑏𝑖𝑝(𝑥|𝜆, 𝑧 ∗) = 𝑑1 + 𝜃𝑑2 

                 subject  to  𝑥 ∈ 𝑅𝑚                 (3) 

where            𝑑1 =
||(𝐹(𝑥)−𝑧∗)𝑇𝜆||

||𝜆||
 

𝑑2 = ||𝐹(𝑥) − (𝑧 ∗ +𝑑1𝜆)|| 

𝜆 represents even spread weight vectors 𝜆1, 𝜆2, . . . 𝜆𝑁; 𝑧∗ is the 

ideal point; 𝜃 > 0 is a preset penalty parameter. 

In MOEA/D-EF, we divide all generations into two parts, 

the evaluation generation ( 𝐸𝐺 ) and the implementation 

generation (𝐼𝐺 ). 𝐸𝐺  and 𝐼𝐺  match each other, and multiple 

𝐸𝐺 − 𝐼𝐺 pairs will be presented in the whole iteration process. 

𝐸𝐺 aims to evaluate the performance of different new-solutions 

generating algorithms (candidate algorithm) fairly by providing 

the same initial environment. However, it leads 𝐸𝐺 to consume 

several times the computing resources of its corresponding 𝐼𝐺. 

Therefore 𝐸𝐺 is usually set to have a small capacity. In this 

study, all 𝐸𝐺s including the initial 𝐸𝐺1 were set to contain 5 

generations, and the initial 𝐼𝐺1 was set to contain 10 generations. 

The capacity of the following 𝐼𝐺𝑘|𝑘>1 has the capacity as 

𝑙𝑒𝑛(𝐼𝐺𝑘) = 2𝑙𝑒𝑛(𝐼𝐺𝑘−1|𝑘>1) until 𝑙𝑒𝑛(𝐼𝐺𝑘) ≥ 40. 

In 𝐸𝐺𝑘, we first copy the population at generation 𝐺 into 

𝑞 copies（in this paper 𝑞 = 3）and assign the identical population 

as an initial population to each candidate algorithm. When all 

candidate algorithms have completed the calculations for 

generation 𝐺 , the Hypervolume value 𝐻𝑉𝑗
𝐺|1≤𝑗≤𝑞 of each 

algorithm are recorded. The population in the next generation 

𝐺 + 1 will be generated by the following mechanism: 

𝑋𝑖
𝐺+1 = 𝑋𝑖,𝑗

𝐺  

          𝑓𝑖𝑡𝑖(𝑋𝑖,𝑗
𝐺 ) = 𝑚𝑖𝑛 𝑓 𝑖𝑡𝑖(𝑋𝑖,𝑗

𝐺 )|1≤𝑗≤𝑞         (4)  

where 𝑋𝑖,𝑗
𝐺  represents the 𝑖th  individual generated by the 

𝑗th candidate algorithm. In this paper, 𝑋𝑖,1
𝐺 ,  𝑋𝑖,2

𝐺  and 𝑋𝑖,3
𝐺  

represent the individual generated by JADE, DE-IDEAL, and 

DE1, respectively. 𝑓𝑖𝑡𝑖(𝑋𝑖,𝑗
𝐺 )represents the fitness-value of 𝑋𝑖,𝑗

𝐺  

to 𝜆𝑖, which can be simply calculated by (10). If generation 𝐺 +

1 still in𝐸𝐺𝑘 , the population in generation 𝐺 + 1 will be copy 

into 𝑞 copies as same as the description at the beginning of this 

paragraph, and repeat the process; Otherwise, the regnant 

candidate algorithm will be determined and be executed in the 

following 𝐼𝐺𝑘 The algorithm works as follows: 

Input: A MOP; A stopping criterion;  𝑁:  the number of 

subproblems; A set of even spread weight vectors:𝜆1, 𝜆2, . . . 𝜆𝑁; 

𝑇: the number of the weight vectors in the neighborhood of each 

weight vector. 

Output: EP, which is an external population used to store 

non-dominated solutions found during the search. 

Step 1) Initialization: 

Step1.1) Set 𝐸𝑃 = ∅. 

Step1.2) Compute the Euclidean distances between any two 

weight vectors and then work out the 𝑇  closest weight vectors 

to each weight vector. For each 𝑖 = 1, . . . , 𝑁,  set 𝐵(𝑖) =

{𝑖1, . . . , 𝑖𝑇},  where 𝜆𝑖1
, . . . , 𝜆𝑖𝑇

 are the 𝑇  closest weight 

vectors to 𝜆𝑖. 

Step1.3) Generate an initial population 𝑆: 𝑋1, . . . 𝑋𝑁 randomly. 
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Step1.4) Initialize 𝑧 = (𝑧1, . . . , 𝑧1𝑚) where 𝑧 = (𝑧1, . . . , 𝑧1𝑚) 

𝑧𝑖 = 𝑚𝑖𝑛𝑓𝑖(𝑥)|1≤𝑖≤𝑚. 

Step1.5) Initialize the capacity of 𝐸𝐺 and 𝐼𝐺 as the method 

mentioned above. 

Step2) Switch: 

If the current generation is in 𝐸𝐺: set 𝑆1 = 𝑆2 = 𝑆3 = 𝑆, and 

assign 𝑆1, 𝑆2, 𝑆3 to JADE, DE-IDEAL, and DE, respectively.
 

Step3) Update: 

For 𝑖 = 1, . . . , 𝑁:  

Step3.1) Reproduction:  

If the current generation is in 𝐸𝐺:  

generate 𝑋𝑖,1
𝐺 ,  𝑋𝑖,2

𝐺  and 𝑋𝑖,3
𝐺  by JADE, DE-IDEAL, and DE, 

respectively. 

Else:  

generate 𝑋𝑖,𝑅
𝐺 which represents the individual generated by 

the regnant candidate algorithm determined during last 𝐸𝐺. 

Step 3.2) Update of 𝑧:  

For 𝑗 = 1, . . . , 𝑚:  

If 𝑧𝑗 > 𝑚𝑖𝑛(𝑓𝑗(𝑋𝑖,1
𝐺 ), 𝑓𝑗(𝑋𝑖,2

𝐺 ), 𝑓𝑗(𝑋𝑖,3
𝐺 ) or 𝑓𝑗(𝑋𝑖,𝑅

𝐺 )):  

𝑧𝑗 = 𝑚𝑖𝑛(𝑓𝑗(𝑋𝑖,1
𝐺 ), 𝑓𝑗(𝑋𝑖,2

𝐺 ), 𝑓𝑗(𝑋𝑖,3
𝐺 ) or 𝑓𝑗(𝑋𝑖,𝑅

𝐺 )), depends 

 on the current generation 𝐺 is in 𝐸𝐺 or not.
 

Step 3.3) Update of Neighboring Solutions:  

  Mark the basic vector of 𝑋𝑖,1
𝐺  as 𝑋𝑖,1

1,𝐺
, where the individual  

𝑋𝑖,1
1,𝐺 ∈ 𝑆1. Let 𝑗 = 1, . . . , 𝑇, the neighborhood of the current 

subproblem can be considered as 𝐵(𝑖) = {𝑖𝑗|1≤𝑗≤𝑇}, where 𝑖𝑗  

is an index represents the 𝑖𝑗thsubproblem, and also it can  

represent a weight vector 𝜆𝑖𝑗
. The neighboring solutions 

update strategy can be considered as: 

For 𝑗 = 1, … , 𝑇: 

  If 𝑓𝑖𝑡𝑖𝑗
(𝑋𝑖,1

𝐺 ) ≤ 𝑓𝑖𝑡𝑖𝑗
(𝑋𝑖,1

𝑗,𝐺
): 

 𝑋𝑖,1
𝑗,𝐺

= 𝑋𝑖,1
𝐺 ; break. 

   𝑋𝑖,2
𝐺 , 𝑋𝑖,3

𝐺  and 𝑋𝑖,𝑅
𝐺  have similar neighboring solutions update 

strategy with the basic vector 𝑋𝑖,1
2,𝐺 , 𝑋𝑖,1

3,𝐺
 and 𝑋𝑖,𝑅

𝑅,𝐺
.    

Step 4) *Update of the population1:  

At the end of generation G, there are three populations 𝑆1, 𝑆2, 𝑆3. 

Step 4.1) Unification: 

For 𝑗 = 1, . . . , 𝑞: 

Do the mechanism shown as (4), get 𝑆𝑗
𝐺+1. 

 
Step 4.2) Calculation of Hypervolume value:  

Calculate 𝐻𝑉1
𝐺 , 𝐻𝑉2

𝐺  and 𝐻𝑉3
𝐺  which represent the 

Hypervolume values of JADE, DE-IDEAL, and DE, 

respectively.
 

Step 5) *End of EG:  

If the current generation is the last generation in 𝐸𝐺, assuming 

that generation 𝐺 is the beginning of the current EG, calculate 

𝑉1, 𝑉2  and 𝑉3,  where 𝑉𝑗 = ∑ 𝑉𝑗
𝐺𝐺+5

𝐺 |1≤𝑗≤𝑞 . The cumulative 

Hypervolume value represents the overall performance of each 

 
1 Step 4)* and Step 5)* are only for the situation that the current generation is in 

EG. 

candidate algorithm in the current EG  respectively. The 

candidate algorithm has the biggest V will be determined as the 

regnant algorithm and will be executed in the following EG. 

Step 6) Update of EP:  

Remove all the dominated vectors in union 𝐸𝑃 ∪ 𝑆𝐺+1. 

Step 7) Stopping Criteria: 

If stopping criteria is satisfied, then output EP. Otherwise, go 

back to Step 2). 

4. Numerical experiments 

Comprehensive experiments are conducted to evaluate our 

new framework and compare the effectiveness of MOEA/D-EF 

with the approaches that only use pure DE, JADE and 

DE-IDEAL. Since Hypervolume values were used as the 

switching indicator in the iteration of MOEA/D-EF, the IGD 

value was selected as the evaluation indicator in the 

comprehensive experiment.  

Three-objective WFG2 series problems with 30, 50 and 100 

design variables are taken as the test instances. In addition to the 

conventional numerical analysis, we discuss the universality of 

the new algorithm utilizing horizontal comparison. 

4.1 Parameters setting  

For each approach, the subproblem number 𝑁 is set to 300, 

and the neighborhood size 𝑇  is set to 21. The scalarization 

function PBI is imported to decompose a MOP. The preset 

penalty parameter 𝜃 = 5  is set throughout. For DE and 

DE-IDEAL, the scaling factor 𝐹 and the crossover rate 𝐶𝑅 are 

set as 0.5 and 0.9, respectively. The unique scaling factor 𝐹` of 

DE-IDEAL is set as 0.1. As the definition given in Section 2, the 

∠𝑉𝐼𝑋  in DE-IDEAL must be less than a threshold 𝜃`,  we 

subjectively relate 𝜃` to 𝜃 as: 𝜃` = 𝑎𝑟𝑐𝑡𝑎𝑛
1

𝜃
. 

4.2 The numerical evaluation of IGD 

Numerical experiments with 30, 50 and 100 design vectors 

were repeated 11 times, respectively. The result of IGD values is 

shown in Table 1 to 3, where MOEA/D-EF is called EF and 

DE-IDEAL is called IDEAL for short. V30 represents each 

approach contains 30 design variables e.g. The MV column 

represents the average IGD value, and the R column represents 

the ranking of the approach in the current problem. The R column 

in the last row represents the average score of the ranking. 

Obviously, the smaller the average score, the better the approach 

performs.  

As shown from Table 1 to 3, DE-IDEAL always takes the 

lead in WFG 4,7,8. JADE takes the lead in WFG 5,6,9 but always 

performs worst in other problems. MOEA/D-EF has not took the 

lead on any problems but never has a worst-case performance.  

DE-IDEAL had the best overall performance in ranking score, 

followed by MOEA/D-EF. With the number of design variables 

increases to 100, the difference between those two approaches 

became very limited. To some extent, this result supports our  

 
2 The IGD values of all approaches on WFG2 showed drastic fluctuations. We 

consider that the results of WFG2 are not representative, and the report related to 

WFG2 will not be listed in current.  
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TABLE 1.  AVERAGE IGD VALUE AND RANKING SCORE 

FOR PROBLEMS WITH 30 VECTORS. 

conjecture about the new-solutions generating algorithm using 

historical information. 

4.3 Universality analysis 

Although the average IGD value and ranking score 

intuitively reflect the performance of each approach on specific 

problems, they cannot intuitively reflect the universality of a 

certain approach. Universality represents a spirit with equilibrium 

that does not require the approach to be dominant in a particular 

problem but requires the approach should not perform poorly in 

any situation. Based on the above thinking, we made a horizontal 

comparison of the four different approaches` IGD value. The 

specific evaluation methods are as follows: 

𝐸𝑗|1≤𝑗≤4 = ∑ (
𝐼𝐺𝐷𝑗

𝑖

𝐼𝐺𝐷𝑚𝑒𝑎𝑛
𝑖

− 𝐼𝐺𝐷𝑚𝑒𝑎𝑛
𝑖 )

𝑖=9

𝑖=1,𝑖≠2

 

𝐼𝐺𝐷𝑚𝑒𝑎𝑛
𝑖 =

∑ 𝐼𝐺𝐷𝑗
𝑖𝑖=9

𝑖=1,𝑖≠2

4
|1≤𝑗≤4          (5) 

where 𝑗 is the index represents MOEA/D-EF, DE, IDEAL and 

JADE, respectively; 𝑖 is the index of WFG series problems; 

𝐼𝐺𝐷𝑗
𝑖

𝐼𝐺𝐷𝑚𝑒𝑎𝑛
𝑖

 scales the average IGD values of each approach in the 

same problem to the same scale, The result of the summation 𝐸𝑗 ,  

is the final universality degree of the approach. The results are 

listed in Table 4. According to the definition given in (5), a 

negative 𝐸𝑗  indicates that this approach performs better than the 

average of all. The smaller the value of 𝐸𝑗 , the more obvious the 

advantage of this approach. 

TABLE 2.  AVERAGE IGD VALUE AND RANKING SCORE 

FOR PROBLEMS WITH 50 VECTORS. 

TABLE 3.  AVERAGE IGD VALUE AND RANKING SCORE 

FOR PROBLEMS WITH 100 VECTORS. 

TABLE 4.  THE UNIVERSALITY DEGREE CALUCLATED 

FROM AVERAGE IGD VALUE 

5. Conclusion 

 In this paper, a new framework MOEA/D-EF, which can 

contain multi new-solutions generating algorithms with different 

search characteristics, is proposed to solve multi-objective 

optimization problems efficiently. Compared with some existed 

frameworks with similar motivation, we made adaptive 

modification on MOPs for candidate algorithms. At the same 

time, we introduce historical information into the process of 

generating new solutions. To a certain extent, the results of 

numerical experiments support our view that historical 

information con-tributes to efficient generation of new solutions; 

The results of the universality degree indicate that the proposed 

new framework is more widely applicable to different problems. 
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V30 
EF DE IDEAL JADE 

MV R MV R MV R MV R 

WFG1 1.4676 3 1.4607 1 1.4613 2 1.4814 4 

WFG3 0.1679 2 0.1566 1 0.1723 3 0.6122 4 

WFG4 0.3100 2 0.3239 3 0.2899 1 0.4765 4 

WFG5 0.1821 2 0.2253 4 0.1877 3 0.1760 1 

WFG6 0.1940 2 0.2518 4 0.2118 3 0.1885 1 

WFG7 0.3562 3 0.3553 2 0.3495 1 0.5983 4 

WFG8 0.4414 3 0.4440 2 0.4201 1 0.6483 4 

WFG9 0.1991 2 0.2489 4 0.2202 3 0.1916 1 

  2.4  2.8  2.1  2.9 

V50 
EF DE IDEAL JADE 

MV R MV R MV R MV R 

WFG1 1.4676 3 1.4663 2 1.4635 1 1.4925 4 

WFG3 0.2628 2 0.2880 3 0.2617 1 0.7330 4 

WFG4 0.3375 2 0.3627 3 0.3177 1 0.5045 4 

WFG5 0.1896 2 0.2531 4 0.1903 3 0.1814 1 

WFG6 0.1730 2 0.2827 4 0.2090 3 0.1680 1 

WFG7 0.4240 2 0.4410 3 0.4060 1 0.7042 4 

WFG8 0.4794 2 0.4982 3 0.4702 1 0.7507 4 

WFG9 0.1842 2 0.2906 4 0.2052 3 0.1763 1 

  2.1  3.3  1.8  2.9 

V100 
EF DE IDEAL JADE 

MV R MV R MV R MV R 

WFG1 1.4760 3 1.4684 1 1.4688 2 1.4965 4 

WFG3 0.3995 2 0.4166 3 0.3917 1 0.8600 4 

WFG4 0.3622 2 0.4094 3 0.3447 1 0.5995 4 

WFG5 0.1922 2 0.1961 3 0.1984 4 0.1865 1 

WFG6 0.1811 2 0.3307 4 0.2051 3 0.1652 1 

WFG7 0.4796 2 0.5117 3 0.4560 1 0.7669 4 

WFG8 0.5199 2 0.5470 3 0.4956 1 0.8012 4 

WFG9 0.1776 2 0.3238 4 0.2034 3 0.1687 1 

  2.1  3  2  2.9 

 EF DE IDEAL JADE 

V30 -0.9589 -0.2320 -0.8520 2.0432 

V50 -1.0821 -0.2639 -0.9193 1.5496 

V100 -1.0087 0.6011 -0.8942 1.3016 
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