WEKO3
アイテム
頚髄損傷患者のfNIRS信号を用いた機械学習による脳活動状態推定
https://ipsj.ixsq.nii.ac.jp/records/215335
https://ipsj.ixsq.nii.ac.jp/records/21533511debfe3-b127-4d21-ab0d-22b296ec1a24
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
Item type | National Convention(1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-03-04 | |||||||||||||||
タイトル | ||||||||||||||||
タイトル | 頚髄損傷患者のfNIRS信号を用いた機械学習による脳活動状態推定 | |||||||||||||||
言語 | ||||||||||||||||
言語 | jpn | |||||||||||||||
キーワード | ||||||||||||||||
主題Scheme | Other | |||||||||||||||
主題 | インタフェース | |||||||||||||||
資源タイプ | ||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||||
資源タイプ | conference paper | |||||||||||||||
著者所属 | ||||||||||||||||
名工大 | ||||||||||||||||
著者所属 | ||||||||||||||||
名工大 | ||||||||||||||||
著者所属 | ||||||||||||||||
名古屋医健スポーツ専門学校 | ||||||||||||||||
著者所属 | ||||||||||||||||
名工大 | ||||||||||||||||
著者所属 | ||||||||||||||||
名工大 | ||||||||||||||||
著者名 |
増尾, 明
× 増尾, 明
× 花井, 俊哉
× 阿部, 信美
× 佐久間, 拓人
× 加藤, 昇平
|
|||||||||||||||
論文抄録 | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | 本研究は,重度運動機能障害者のリハビリテーション応用を目的として,暗算課題遂行時の機能的近赤外分光法(fNIRS)を用いて脳活動状態を推定した.頚髄損傷患者を対象に,OEG-SPO2を用いて前額部の脳血行動態を計測した.実験は,タスク30秒と安静30秒の3回ずつの反復を1試行とするブロックデザインを使用し,生体信号の日間変動を考慮し4日間で計10試行の計測を実施した.タスク・安静の各区間のfNIRS信号に対して血流動態分離法を適用し,6種の統計量によるデータセットを構築した.サポートベクターマシン(SVM)にて学習し,4分割交差検証による各区間の判別性能を評価した.SVMの結果および運動機能障害者への医療応用の可能性について報告する. | |||||||||||||||
書誌レコードID | ||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||
収録物識別子 | AN00349328 | |||||||||||||||
書誌情報 |
第83回全国大会講演論文集 巻 2021, 号 1, p. 9-10, 発行日 2021-03-04 |
|||||||||||||||
出版者 | ||||||||||||||||
言語 | ja | |||||||||||||||
出版者 | 情報処理学会 |