@inproceedings{oai:ipsj.ixsq.nii.ac.jp:00215335,
 author = {増尾, 明 and 花井, 俊哉 and 阿部, 信美 and 佐久間, 拓人 and 加藤, 昇平},
 book = {第83回全国大会講演論文集},
 issue = {1},
 month = {Mar},
 note = {本研究は,重度運動機能障害者のリハビリテーション応用を目的として,暗算課題遂行時の機能的近赤外分光法(fNIRS)を用いて脳活動状態を推定した.頚髄損傷患者を対象に,OEG-SPO2を用いて前額部の脳血行動態を計測した.実験は,タスク30秒と安静30秒の3回ずつの反復を1試行とするブロックデザインを使用し,生体信号の日間変動を考慮し4日間で計10試行の計測を実施した.タスク・安静の各区間のfNIRS信号に対して血流動態分離法を適用し,6種の統計量によるデータセットを構築した.サポートベクターマシン(SVM)にて学習し,4分割交差検証による各区間の判別性能を評価した.SVMの結果および運動機能障害者への医療応用の可能性について報告する.},
 pages = {9--10},
 publisher = {情報処理学会},
 title = {頚髄損傷患者のfNIRS信号を用いた機械学習による脳活動状態推定},
 volume = {2021},
 year = {2021}
}