WEKO3
アイテム
On the Metric Dimension of Biregular Graph
https://ipsj.ixsq.nii.ac.jp/records/183003
https://ipsj.ixsq.nii.ac.jp/records/18300370f374d8-4a70-46a3-8c1e-5c2838b8cc67
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
Copyright (c) 2017 by the Information Processing Society of Japan
|
|
| オープンアクセス | ||
| Item type | Journal(1) | |||||||
|---|---|---|---|---|---|---|---|---|
| 公開日 | 2017-08-15 | |||||||
| タイトル | ||||||||
| タイトル | On the Metric Dimension of Biregular Graph | |||||||
| タイトル | ||||||||
| 言語 | en | |||||||
| タイトル | On the Metric Dimension of Biregular Graph | |||||||
| 言語 | ||||||||
| 言語 | eng | |||||||
| キーワード | ||||||||
| 主題Scheme | Other | |||||||
| 主題 | [特集:離散と計算の幾何・グラフ・ゲーム] (μ, σ)-regular graph, basis, metric dimension, resolving set | |||||||
| 資源タイプ | ||||||||
| 資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
| 資源タイプ | journal article | |||||||
| 著者所属 | ||||||||
| Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung | ||||||||
| 著者所属(英) | ||||||||
| en | ||||||||
| Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung | ||||||||
| 著者名 |
Suhadi, Wido Saputro
× Suhadi, Wido Saputro
|
|||||||
| 著者名(英) |
Suhadi, Wido Saputro
× Suhadi, Wido Saputro
|
|||||||
| 論文抄録 | ||||||||
| 内容記述タイプ | Other | |||||||
| 内容記述 | The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.634 ------------------------------ |
|||||||
| 論文抄録(英) | ||||||||
| 内容記述タイプ | Other | |||||||
| 内容記述 | The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.634 ------------------------------ |
|||||||
| 書誌レコードID | ||||||||
| 収録物識別子タイプ | NCID | |||||||
| 収録物識別子 | AN00116647 | |||||||
| 書誌情報 |
情報処理学会論文誌 巻 58, 号 8, 発行日 2017-08-15 |
|||||||
| ISSN | ||||||||
| 収録物識別子タイプ | ISSN | |||||||
| 収録物識別子 | 1882-7764 | |||||||