{"created":"2025-01-19T00:50:33.751119+00:00","updated":"2025-01-20T03:50:36.089050+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00183003","sets":["581:8997:9006"]},"path":["9006"],"owner":"11","recid":"183003","title":["On the Metric Dimension of Biregular Graph"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-08-15"},"_buckets":{"deposit":"b1a4fbad-2b5e-4758-962b-f430a302cb21"},"_deposit":{"id":"183003","pid":{"type":"depid","value":"183003","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"On the Metric Dimension of Biregular Graph","author_link":["400168","400167"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"On the Metric Dimension of Biregular Graph"},{"subitem_title":"On the Metric Dimension of Biregular Graph","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"[特集:離散と計算の幾何・グラフ・ゲーム] (μ, σ)-regular graph, basis, metric dimension, resolving set","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"2017-08-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/183003/files/IPSJ-JNL5808017.pdf","label":"IPSJ-JNL5808017.pdf"},"date":[{"dateType":"Available","dateValue":"2019-08-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL5808017.pdf","filesize":[{"value":"124.5 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"5"},{"tax":["include_tax"],"price":"0","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"596aa932-b7b8-4b2c-bfd2-2ea9e05f403e","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2017 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Suhadi, Wido Saputro"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Suhadi, Wido Saputro","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1.\n------------------------------\nThis is a preprint of an article intended for publication Journal of\nInformation Processing(JIP). This preprint should not be cited. This\narticle should be cited as: Journal of Information Processing Vol.25(2017) (online)\nDOI http://dx.doi.org/10.2197/ipsjjip.25.634\n------------------------------","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1.\n------------------------------\nThis is a preprint of an article intended for publication Journal of\nInformation Processing(JIP). This preprint should not be cited. This\narticle should be cited as: Journal of Information Processing Vol.25(2017) (online)\nDOI http://dx.doi.org/10.2197/ipsjjip.25.634\n------------------------------","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicIssueDates":{"bibliographicIssueDate":"2017-08-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"8","bibliographicVolumeNumber":"58"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"id":183003,"links":{}}