ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.58
  3. No.4

Event.Locky: System of Event-Data Extraction from Webpages based on Web Mining

https://ipsj.ixsq.nii.ac.jp/records/178666
https://ipsj.ixsq.nii.ac.jp/records/178666
11e0d98a-5440-47da-a9d2-a1c10eef349f
名前 / ファイル ライセンス アクション
IPSJ-JNL5804014.pdf IPSJ-JNL5804014.pdf (2.6 MB)
Copyright (c) 2017 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2017-04-15
タイトル
タイトル Event.Locky: System of Event-Data Extraction from Webpages based on Web Mining
タイトル
言語 en
タイトル Event.Locky: System of Event-Data Extraction from Webpages based on Web Mining
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] event data, web mining, text classification, spatial-temporal visualization
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Engineering, Nagoya University
著者所属
Institute of Innovation for Future Society, Nagoya University
著者所属
Faculty of Information Science, Aichi Institute of Technology
著者所属
Graduate School of Engineering, Nagoya University
著者所属
Graduate School of Engineering, Nagoya University/Institute of Innovation for Future Society, Nagoya University
著者所属(英)
en
Graduate School of Engineering, Nagoya University
著者所属(英)
en
Institute of Innovation for Future Society, Nagoya University
著者所属(英)
en
Faculty of Information Science, Aichi Institute of Technology
著者所属(英)
en
Graduate School of Engineering, Nagoya University
著者所属(英)
en
Graduate School of Engineering, Nagoya University / Institute of Innovation for Future Society, Nagoya University
著者名 Chenyi, Liao

× Chenyi, Liao

Chenyi, Liao

Search repository
Kei, Hiroi

× Kei, Hiroi

Kei, Hiroi

Search repository
Katsuhiko, Kaji

× Katsuhiko, Kaji

Katsuhiko, Kaji

Search repository
Ken, Sakurada

× Ken, Sakurada

Ken, Sakurada

Search repository
Nobuo, Kawaguchi

× Nobuo, Kawaguchi

Nobuo, Kawaguchi

Search repository
著者名(英) Chenyi, Liao

× Chenyi, Liao

en Chenyi, Liao

Search repository
Kei, Hiroi

× Kei, Hiroi

en Kei, Hiroi

Search repository
Katsuhiko, Kaji

× Katsuhiko, Kaji

en Katsuhiko, Kaji

Search repository
Ken, Sakurada

× Ken, Sakurada

en Ken, Sakurada

Search repository
Nobuo, Kawaguchi

× Nobuo, Kawaguchi

en Nobuo, Kawaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Nearby event data, such as those for exhibitions and sales promotions, may help users spend their free time more efficiently. However, most event data are hidden in millions of webpages, which is very time-consuming for a user to find such data. To address this issue, we use web mining that extracts event data from webpages. In this paper, we propose and discuss the implementation of Event.Locky - a system for extracting event data from webpages in a user-defined area and displaying them to a user in a spatial-temporal structure. Furthermore, we design two core algorithms for event data extraction in Event.Locky: webpage-data-record extraction and event-record classification. The former is used to convert a semi-structural HTML document into processable structured data. The latter filters out non-event data from extracted data records using machine learning. We trained and evaluated Event.Locky with an actual dataset composed by 96 restaurants and shops at Nagoya train station. As a result, our event-classification algorithm achieved an F1 score of 91.61%, an increase of 3.07% from current event-classification algorithms. The combination of our event-classification algorithm and our data-record-extraction algorithm achieved F1 score 83.96% to extract event records from webpages. That increased 1.6% from current algorithm. Finally, we discuss the feasibility of Event.Locky in an actual online environment through the implementation of a demonstration application.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.25(2017) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.25.321
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Nearby event data, such as those for exhibitions and sales promotions, may help users spend their free time more efficiently. However, most event data are hidden in millions of webpages, which is very time-consuming for a user to find such data. To address this issue, we use web mining that extracts event data from webpages. In this paper, we propose and discuss the implementation of Event.Locky - a system for extracting event data from webpages in a user-defined area and displaying them to a user in a spatial-temporal structure. Furthermore, we design two core algorithms for event data extraction in Event.Locky: webpage-data-record extraction and event-record classification. The former is used to convert a semi-structural HTML document into processable structured data. The latter filters out non-event data from extracted data records using machine learning. We trained and evaluated Event.Locky with an actual dataset composed by 96 restaurants and shops at Nagoya train station. As a result, our event-classification algorithm achieved an F1 score of 91.61%, an increase of 3.07% from current event-classification algorithms. The combination of our event-classification algorithm and our data-record-extraction algorithm achieved F1 score 83.96% to extract event records from webpages. That increased 1.6% from current algorithm. Finally, we discuss the feasibility of Event.Locky in an actual online environment through the implementation of a demonstration application.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.25(2017) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.25.321
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 58, 号 4, 発行日 2017-04-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 05:02:26.731169
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3