
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Event.Locky: System of Event-Data Extraction from
Webpages based on Web Mining

Chenyi Liao1,a) Kei Hiroi2,b) Katsuhiko Kaji3,c) Ken Sakurada1,d) Nobuo Kawaguchi1,2,e)

Received: May 12, 2016, Accepted: January 10, 2017

Abstract: Nearby event data, such as those for exhibitions and sales promotions, may help users spend their free time
more efficiently. However, most event data are hidden in millions of webpages, which is very time-consuming for a
user to find such data. To address this issue, we use web mining that extracts event data from webpages. In this paper,
we propose and discuss the implementation of Event.Locky – a system for extracting event data from webpages in
a user-defined area and displaying them to a user in a spatial-temporal structure. Furthermore, we design two core
algorithms for event data extraction in Event.Locky: webpage-data-record extraction and event-record classification.
The former is used to convert a semi-structural HTML document into processable structured data. The latter filters
out non-event data from extracted data records using machine learning. We trained and evaluated Event.Locky with
an actual dataset composed by 96 restaurants and shops at Nagoya train station. As a result, our event-classification
algorithm achieved an F1 score of 91.61%, an increase of 3.07% from current event-classification algorithms. The
combination of our event-classification algorithm and our data-record-extraction algorithm achieved F1 score 83.96%
to extract event records from webpages. That increased 1.6% from current algorithm. Finally, we discuss the feasibility
of Event.Locky in an actual online environment through the implementation of a demonstration application.

Keywords: event data, web mining, text classification, spatial-temporal visualization

1. Introduction

Most organizations publish event information (such as sales
promotions or exhibitions) on their webpages with the aim of at-
tracting more users. Providing event data within spatial-temporal
information will benefit user offline participation. There are event
search services (e.g., ATND [1] and Peatix [2] etc.) that collect
spatial-temporal event data through user uploads. However, these
services provide event registration platforms that are focused on
individual events (almost about seminars or lectures). They do
not provide certain valuable business events (such as sales promo-
tions or happy hours), which are more attractive for users. Except
event search APIs, users also voluntarily share event data they
feel interesting through social network services (SNSs). Some
approaches address event-data extraction on Twitter [3], [4], [5].
Unfortunately, most event data on SNSs are not official. Although
some organizations also tweet event data on official blogs, most
tend to share event data on their own webpages. Official web-
pages contain accurate event data of organizations. Neverthe-
less, the communication efficiency of webpages is limited be-

1 Graduate School of Engineering, Nagoya University, Nagoya, Aichi
464–8601, Japan

2 Institute of Innovation for Future Society, Nagoya University, Nagoya,
Aichi 464–8601, Japan

3 Faculty of Information Science, Aichi Institute of Technology, Toyota,
Aichi 470–0392, Japan

a) liao@ucl.nuee.nagoya-u.ac.jp
b) k.hiroi@ucl.nuee.nagoya-u.ac.jp
c) kaji@aitech.ac.jp
d) sakurada@nagoya-u.jp
e) kawaguti@nagoya-u.jp

cause only loyal users check familiar websites regularly. For new
users (such as tourists or passersby who are waiting for the next
train at an unfamiliar train station), it is impossible to obtain event
data from webpages at an unfamiliar area.

In order to solve these problems, we explore the new concept
of a system extracting event data from organization webpages (in-
cluding official websites and SNSs) so that it can push nearby
event data to users according to current spatial-temporal condi-
tions. We consider a specific question of this concept: can web
mining techniques be applied? Web mining [6] is the process of
extracting useful information from the content of web document.
In this study, we focused on event data mining and developed a
system called Event.Locky for event data extraction.

The process flow of Event.Locky is shown in Fig. 1. First, a
user’s device sends location information obtained from a GPS
sensor or by a user indication to the server. Second, the URLs
of nearby organizations are obtained through a search engine ac-
cording to location information. Third, a crawler in the server
downloads webpage documents. Forth, our web-data-record ex-

traction then converts the HTML documents into processable
structured data and our event-record classification filters out non-
event data. The web-data-record extraction, which we discuss
in Section 3, is divided into three steps: Inline-level Element

Pruning in Section 3.1, Partial Tree Matching in Section 3.2, and
Backtracking in Section 3.3. We discuss event-record classifica-
tion in Section 4 about our paragraph vector generation and the
classifier. Finally, the server pushes event data including loca-
tions, times, images, and contents to the user’s client. A client
application in the user’s device displays these event records as

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 The process flow of geographical-area event-data extraction.

spatial-temporal data.
In summary, the paper makes the following contributions:
• We propose an event-data-extraction system called

Event.Locky, which is a combination of our robust web-data-

record-extraction algorithm and event-record-classification

algorithm, which converts webpages into data records
apply to 83.96% event data on all types of webpages. We
adopt HTML partial tree matching, which extracts data
records on web documents with similar and continuous
sub-structures. Event.Locky also uses our novel pruning
process to remove unrelated elements for reducing sample
noise and computation complexity, and our backtracking
process that makes independent records extraction possible.
Our Event.Locky increases F1 score by 1.6% from current
algorithms for event records extraction.

• Event.Locky involves a high-performance event-record-

classifier model. For filtering out non-event data, we imple-
mented a semantic-event-record-classifier that adopts a dis-
tributed representation model to generate paragraph vectors.
Based on the neural network language model Word2Vec, we
use a weighted optimization method to increase the classi-
fication performance. A support vector machine (SVM) is
used with a radial basis function (RBF) kernel as the clas-
sifier. By cross validation, we achieved an F1 score of
91.61%. Event.Locky currently can be applied to data in
most Japanese websites.

2. Related Work

2.1 The Work of Web Data Extraction
Data on a webpage are composed of semi-structured data,

which cannot be directly processed. Such data are generated by
records in a database following particular rules. Intuitively, a re-
gion on webpage including one or more elements wraps a data
record from a database. A web-data-record extraction algorithm
generates wrappers that identify regions of data records and ex-
tract data records from webpages [7].

A number of approaches cover the theme of web-data-
extraction based on manual, tag, page-layout, vision and tree.
Manual [8], [9] and tag-based [10], [11] approaches are funda-
mental for web-data-extraction. By observing the structure of

Table 1 Feature comparison of data-record-extraction approaches.

Manual8,9 VIPS13,14 DEPTA16,17 ours

Automatic Webpage
Records Extraction

× © © ©
Atomic Records

Extraction
© × © ©

Unrelated Elements
Pruning

× × × ©
Hidden Elements

Extraction
© × © ©

Independent Elements
Extraction

© © × ©

individual webpages, programmer writes a program (wrapper) to
extract data records from regular expressions or particular paths.
Manual approaches can accurately extract data records from an
HTML document. They are frequently used to obtain periodic
data (such as stock movements or price trends) from several web-
pages. Although programmers have to define different extraction
patterns for each webpage, these approaches are not suitable for
automatic data records extraction from heterogeneous webpages.

Kovacevic et al. [12] proposed a page-layout approach by ob-
serving the webpage layout. There are some design page-layout
patterns (such as header, footer, left, right, and center) that al-
low a page to be segmented into fixed regions. This approach
is effective for normal layout patterns of most web pages. How-
ever, it cannot be used on all webpages. The event webpage of
a shop is most likely designed unconventionally; therefore, this
page-layout-based approach is unsuitable.

Cai et al. [13], [14] proposed a vision-based page segmenta-
tion (VIPS) [15] approach, that simulates the human visual per-
ception to segment webpage blocks, which distinguish different
parts of a web page, such as lines, blanks, images, and colors.
This approach can be applied to automatic webpages blocks seg-
mentation. However, the extracted data records with VIPS are
sometimes not atomic. For example, a list of titles in a 〈div〉 ele-
ment may be estimated as one block (one record) by VIPS, rather
than segmented into individual titles. In addition, some hidden
items in a webpage (such as a slider bar) can not be extracted
with VIPS; thus, it is not suitable for extracting event records
from webpages.

Zhai and Liu [16], [17] developed a tree-based web-data-
record-extraction approach called DEPTA [18]. This approach
extracts web data from the viewpoint of webpage generation.
Data records from a data table are typically presented in continu-
ous regions on a webpage and formatted using fixed HTML tem-
plates. By matching partial tree structures, data records can be
extracted; thus, it is suitable for converting from semi-structure
data to structured data. However, this approach dose not take into
account how to extract an independent data record without any
similar continuous region on a page. It also does not take into
account specific HTML elements, which are unrelated (such as
inline elements) to partial tree matching but increase the com-
plexity.

Event.Locky users our novel automatic web-data-record-
extraction algorithm. Table 1 shows feature comparison of what
are the advantages in our algorithm compared to current ap-
proaches. Based on partial tree matching, we present a pruning

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

process to reduce un-related elements and a backtracking process
that makes independent element extraction possible. We con-
ducted a quantitative evaluation experiment, which is discussed
in Section 5.2.

2.2 Filtering Out Unrelated Data
Data records extracted from webpages contain large amounts

of unrelated data. A machine learning algorithm is commonly
used unrelated data cleaning. In this study, we filtered out non-
event data in a semantic text classifier. For a text classification
task, mapping a paragraph to a dimensional vector is the key
to maintaining classification performance. A one-hot paragraph
vector [19] can solve many text classification problems. How-
ever, a one-hot paragraph may appear sparse and have high di-
mensionality, which may increase classification errors. Tomas
et al. [20], [21], [22] proposed a neural network language model
called Word2Vec, which clusters similar words (e.g. ‘coupon’
and ‘campaign’) with smaller cosine similarities. It effectively
builds the semantic relationship between each word and solves
the sparse problem of training a dataset. However, Word2vec
works on the word level, which does not offer any direct imple-
mentation to obtain the paragraph vector.

Le et al. proposed a paragraph vector framework called
PVDM [23]. It considers a paragraph token as another word
called ‘memory’ in paragraph, and trains the paragraph token as
the paragraph vector in Word2Vec processing. However, in this
task, the paragraph as a record on webpages tends short. In train-
ing with few words, the convergence of PVDM is not complete.
Repetitive training can solve this question but requires more com-
puting resources. On the other hand, based on Word2Vec, PVDM
solves some semantic problems. Nevertheless, it lacks an op-
timization for a specific classification task. Aiming at event
records classification, we present a weighed vector method based
on Word2Vec, which is more concise and achieves a higher F1

score than existing methods.
We use a classifier to estimate data records belonging to event

data. Some of the most frequently used methods for classification
are the Naive Bayes classifier [24] and the k-Nearest Neighbors
(k-NN) [25] classifier. However, because there is noise in training
data, both Naive Bayes and k-NN easily appear overfit when the
sample size increases. Thus, it is difficult to ensure their robust-
ness. With Event.Locky, we use an SVM [26], [27] with a RBF
kernel as the classifier. We conducted evaluation experiments,
which are discussed in Section 5.1.

3. Web-Data-Record Extraction

Due to extracting event records from webpages, we developed
our web-data-record-extraction algorithm. It identifies records as
semi-structured data on webpages and converts them into struc-
tured data. The challenge is how to generate wrappers that seg-
ment an entire webpage into records and ensure each record in-
cludes an atomic data record. Partial tree alignment is an im-
portant concept in wrappers generation. Figure 2 shows an ex-
ample webpage [28], where each data record (in the list) has the
date, address, description, categories, etc. They align continu-
ously with a similar structure. Therefore, it is possible to detect

Fig. 2 Event-records List in Webpage (a) is Generated from Event-record
Table (b) in Database. Each row in the data table is filled with the
same HTML structure to generate the list of event records. There-
fore, event records have the same HTML structure. Wrappers can be
segmented by matching HTML structures.

Fig. 3 The process flow of web-data-record extraction.

records according to matching similar structures on the webpage.
We begin this section by explaining inline-level element pruning,
which helps us prune the HTML tree to improve the accuracy of
the wrapper generation and the reduce computational complex-
ity of the web-data-record extraction algorithm. After that, we
explain the partial tree matching algorithm. Finally, by the back-
tracking process, we can also extract some independent records
without any continuous siblings. The process flow of these three
steps is shown in Fig. 3.

3.1 Inline-level Element Pruning
The pruning process is used to remove the elements, which are

not related to the HTML structure matching. A target of web de-
signing is to enable users to identify data records on a webpage
as easily as possible. Designers keep data records identifiable
through space separations on webpages. Some HTML elements
affect the spatial structure of webpages; however, others do not.
In the HTML 2.0 [29] standard, HTML elements are divided into
block-level elements and inline-level elements. Because inline el-
ements normally do not significantly affect the webpage structure,
we argue that they should not be used for partial tree matching on
a webpage. In this case, inline elements may affect the result of
partial tree matching. Consequently, pruning of inline elements
is done to reduce the computational complexity for partial tree
matching.

Pruning is started from scanning a HTML document D in
breadth-first search at lines 2 to 7. As shown in Algorithm 1, we
initialize a queue Q[] = {D.Body()} with a single element, which
is the 〈body〉 element of the HTML document D, and initialize a
cursor i of Q from 0 at line 1. At line 3, children elements of Q[i]
are stored in the queue E[]. At lines 4 to 6, E[] are iterated. At
lines 5 and 6, if the child element is a block-level element, it is
added into the end of the queue Q[]. At line 7, the i increases by

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Algorithm 1: Inline-level Element-Pruning
input : An HTML document D.

output: A pruned elements queue Q[].

1 Q[]={D.Body()}, i=0;

2 while i < Q[].Size() do
3 E[] = Q[i].Children();

4 foreach element e of E do
5 if e.isBlock() then
6 Q[]←− e;

7 i = i + 1;

8 return Q[];

Fig. 4 Example of Partial Tree Matching with 2 Types of Wrapper Struc-
tures, as Shown in HTML Tree. The map below the tree structure
extends each element in Q as first row. From the second row, there
are corresponding children elements. The last row shows the number
of siblings of the element that determines the width of the matching
window. It was observed that wrappers can be extracted by matching
columns in each window (the dotted region in the table).

1. The pruned tree is stored in the Q[], which is used for partial
tree matching the next step.

3.2 Partial Tree Matching
The reason of adopting breadth-first search is that a webpage is

designed from outline to detailed, namely from a large to a small
area. A breadth-first search precisely scans a webpage from a
large area to a small area. The Q[] from the pruning process hap-
pens to be a sequence arranged as a breadth-first search, which
can be directly used for partial tree matching.

We explain the process of partial tree matching and wrappers
extraction in an example of a tree structure, which is shown at
the top of Fig. 4. We assume there are two wrappers W1 and
W2 of six partial trees. For ease of explanation, we extend the
pruned tree Q[] into a first row of the map, as shown at the bot-
tom of Fig. 4. The first row is assigned each element in Q[] as a
breadth-first search. From the second row, there are correspond-
ing descendant elements, which are also aligned through breadth-
first search, namely the partial tree structure of the element. The
matching process is from left to right. Obviously, the three 〈tr〉

Algorithm 2: Partial Tree Matching
input : Q[] is from inline-level element-pruning.

output: R[][] stores extracted records, and Q[] with marked elements.

1 R[][] = {}, i = 0;

2 while i < Q[].S ize() do
3 if Q[i].isExtracted() = true then
4 continue;

5 else
6 w = 1;

7 while w < Q[i].SiblingsNumber() / 2 do
8 l =Match({Q[i] to Q[i + w − 1]}, {Q[i − w] to Q[i − 1]});
9 r =Match({Q[i] to Q[i + w − 1]}, {Q[i + w] to

Q[i + 2w + 1]});
10 if l or r then
11 R[]←− {Q[i] to Q[i + w − 1]};
12 {Q[i] to Q[i + w − 1]}.MarkExtracted();

13 {Q[i] to Q[i + w − 1]}.MarkAllChildrenExtracted();

14 {Q[i] to Q[i + w − 1]}.MarkAllParentsExtracted();

15 i = i + w − 1;

16 break;

17 else
18 w = w + 1;

19 i = i + 1;

20 return R[][],Q[];

records can be extracted by matching each of their columns.
However, matching each of the elements is not suitable in some

exceptional cases. Some records may be constructed with multi-
ple elements in the same level, such as two 〈div〉s or more. Fig-
ure 4 gives an example in which a 〈dt〉 element and a 〈dd〉 element
construct one record. In this case, the matching function needs to
be compared to both elements. We designed a matching window
mechanism to address this case. It determines how many columns
of same-level-elements are combined to match. The width of the
window loops from one to half the number of siblings elements,
which is shown as the last row in Fig. 4. In this case, when the
window width increases to two, wrapper W2 is generated.

Algorithm 2 shows the details of the partial tree matching. The
Q[] is from the inline-level element-pruning process as the input.
At line 1, because a record may include multiple elements, we
initialize a two-dimensional array R[][] to store extracted records,
and an i for Q[]. At line 3, if Q[i] has been marked as an extracted
element, skips it and continue to the next loop. The extracted-
element-marking process is shown at lines 12 to 14. At line 6,
it initializes a w of the matching window size from value 1. At
line 7, the w increases by 1 (at line 18) until it reaches half the
number of Q[i] siblings. At lines 8 and 9, it matches the columns
in the current window with the left and right windows, and stored
the results in two boolean variables l and r. At line 10, if l or r

is true, elements of the current window are added into array R[]
as a record (line 11). At line 12, all the elements of the current
window are marked as ‘extracted’. At line 13, all the child ele-
ments of the current window are marked as ‘extracted’. At line
14, all the parent elements of the current window are marked as
‘extracted’. Line 15 skips the extracted elements of the current
window and updates i to i + w − 1. Line 16 breaks the loop in
line 7 and goes to line 19. If it is not matched at line 10, the w

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 5 Common Structure of Independent Record: 3 Event Records are
Aligned as a List on the Right Side. They can be extracted by partial
tree matching. Another highlight event record is drawn on the left
side independently, which cannot be extracted. All have the same
parent element. We mark the parent element when those 3 records
are extracted. The independent record can be extracted by observing
its parent element.

Fig. 6 Wrapper Generation by Backtracking the Marked Parent Element.
When wrapper W1 is generated, the parent element P is marked as
‘extracted’. After that, all tree elements are backtracked to generate
wrapper W2, which has not been extracted yet but has marked the
parent element.

increases to 1 at line 18. At line 19, i increases to 1. The extracted
records in the array R[][] and marked Q[] are returned at line 20.

This partial tree matching algorithm extracts major data
records on a webpage. However, independent records without
any continuous and similar sibling are not extracted. At the next
stage, we focus on independent records extraction through a back-
tracking process.

3.3 Backtracking: Independent Record Extraction
When a web designer tries to emphasize an important event

data record, the record probably can be drawn as a special struc-
ture on the page, although it may be selected from the same data
table. Figure 5 shows a typical independent record on a web-
page [30]. We can see that the designer draws the event record
‘Genome Integrity Discussion Group’ in a larger area than the
others. Because this event element has no sibling, the partial tree
matching algorithm does not work in this case.

Fortunately, by observing a large amount of samples like this,
we found a feature of independent records can be used. Records
from a data table tend to be drawn at the same depth in the HTML
tree with the same parent element. If we mark each extracted
parent element during partial tree matching, some independent
wrappers with a marked parent element can be extracted. Be-
cause this process is after partial tree matching and scans the tree
in breadth-first search one more time, we call it a backtracking

process. Therefore, by backtracking extracted records, these in-
dependent records may be extracted to a certain extent. As shown
in Fig. 6, the wrapper W1 is generated by partial tree matching and
W2 wraps an independent record. W2 can be generated by mark-
ing parent element P, which is marked when W1 is generated.

As shown in Algorithm 3, we scan queue Q again as breadth-
first search. The Q[] and extracted R[][] are outputted from partial

Algorithm 3: Backtracking
input : R[][] and Q[] are from partial tree matching.

output: R[][] stores extracted records.

1 i = 0;

2 while i < Q[].Size() do
3 if Q[i].isExtracted() = false then
4 if Q[i].Parent().isExtracted() = true then
5 R[]←− Q[i];

6 Q[i].MarkExtracted();

7 Q[i].MarkAllChildrenExtracted();

8 i = i + 1;

9 return R[][];

tree matching as the input. At line 1, an i for Q is initialized. At
line 2, i is looped from 0 until the size of Q[i]. At line 3, if Q[i]
has not been extracted yet, the program runs lines 4 to 6. At line
4, if the parent element of Q[i] is marked as an extracted element,
Q[i] is extracted and added into R[] at line 5. Note that, the mark-
ing is done during partial tree matching as shown in Algorithm 2
at lines 12 to 14. At line 6, Q[i] is marked as ‘extracted’. At line
7, all the children elements of Q[i] are marked as ‘extracted’. At
line 11, all the extracted records in array R[] are returned.

In summary, the above three processes extract data records on
a webpage. However, these primary processed records can not
be pushed to users yet. There is a vast amount of non-event data;
therefore, it is necessary to filter out such data. In the next section,
we present our classification algorithm to filter out non-event data
using machine learning.

4. Event-Record Classification

4.1 The Background of Paragraph Vector Generation
We filter out non-event data as a text classification task. We call

the text of an event record a ‘paragraph’. As a semantic classifier
for text, it is essential to start from mapping the paragraph into
a mathematical model. One-hot representation [19] is the most
commonly used model. A paragraph X is mapped into a vector as

X = [w1, w2, ..., wi, ..., wn] ωi ∈ {0, 1}
where the dimensionality n is predefined to the size of a dictio-
nary. If a word wi appears in the paragraph, it is set to the binary
value 1; otherwise 0. Although this model can solve many prob-
lems in text classification, it has two serious disadvantages. First,
due to sparseness, each word is independent. The one-hot rep-
resentation model cannot build semantic relationships between
words (e.g., ‘coupon’ and ‘campaign’ are unrelated in the one-
hot representation model, although they have similar linguistic
functions). Therefore, the classification accuracy is restricted
to the coverage of training data. Second, paragraph vectors are
mapped to a high-dimensional vector with the dimensionality n

(n > 200, 000 in Japanese). The model with a high-dimension
vector may reduce the efficiency of the classifiers. This is a dis-
advantage for some classifiers.

Distributed representation models have been recently pre-
sented. Word2Vec [20], [21], [22] is the most common. By ob-
serving a word ωi that appears near its context [ωi−c, ωi−1] and
[ωi+1, ωi+c] with the probability P(ωi|context(ωi)), it clusters sim-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

ilar words with smaller cosine similarities in a low-dimensional
vector space (usually n = 50, 100 or 200). It mitigates the
disadvantages with the one-hot representation model. However,
word2vec works on the word level, which does not offer any di-
rect implementation to obtain the paragraph vector. Furthermore,
as a word clustering algorithm, Word2Vec has no optimization for
specific classification tasks. In this paper, we present a weighted
optimization paragraph vector mapping method that works on
word vectors and improves the classification of paragraph vec-
tors.

4.2 Optimization Method: Weighted Paragraph Vectors
First, we obtain a paragraph vector from word vectors. We map

a paragraph into an n-dimensional vector X using the centroid of
word vectors, which constitute the paragraph. This is described
as

X =
1
m

m∑

i=1

ωi ωi ∈ Rn

where m is the number of words in a paragraph, ωi are the words
constituting the paragraph, and n is the dimensionality of a para-
graph vector, which equals the dimensionality of the word vector
because we map paragraphs to the same vector space as words. It
can be seen that the paragraph vector is mapped to the mean of
words vectors. With this method, each word vector has a uniform
weight of 1. In other words, each word vector gives the same
support for the paragraph vector.

Second, we explain the concept and give a description of a
weighted paragraph vector. We assume some words in the dictio-
nary are strongly related to the polarity of event-data classifica-
tion (such as the words ‘firework show’, ‘exhibition’ etc). In com-
parison, some words are weakly related to classification (such as
‘the’ and ‘and’ etc). If a word is strongly related for classification,
it should be given a higher weight. Geometrically, the paragraph
vector should ‘drift’ close to the higher-weight word vectors; oth-
erwise, far from the lower-weight word vectors. This is the con-
cept of a weighted paragraph vector. Therefore, the equation of a
weighted paragraph vector is given as

X =

∑m
i=1 θiωi

1 +
∑m

i=1 θi
θi ∈ [0, 1] (1)

where θi is the weight of the ith word ωi in a paragraph. The def-
inition domain of θi is a closed interval from 0 to 1. Because in
some cases, the sum of weights may be 0 in a paragraph, we add
1 to the denominator to avoid an infinite value.

The training event dataset is given as {(p( j), y( j)); j =

1, 2, ...,M}, where p( j) is the jth paragraph in the dataset (with
size M) corresponding to a target variable y( j) ∈ {0, 1}. We obtain
the weight θi by using Naive Bayes, which calculates the proba-
bility of an ωi that belongs to a target variable y(i) as

p(y|ωi) =
p(ωi|y)p(y)

p(ωi)
(2)

where the target variable y is set to 1 if the paragraph is an event
record; otherwise, set to 0. When the training dataset is large
enough, we approximatively consider

p(ωi) ≈ M(ωi)
M

p(y) ≈ My
M

p(ωi|y) ≈ M(ωi, y)
My

(3)

where the integer M is the number of training datasets. M(ωi)
is that in which the word ωi appears. My is that with y, and
M(ωi, y) is that including ωi also with y. By substituting Eq. (3)
into Eq. (2), we obtain the probability of y given ωi as

p(y|ωi) =
M(ωi, y)
M(ωi)

p(y|ωi) ∈ [0, 1]

Note that, p(y = 1|ωi) and p(y = 0|ωi) are complementary.
Therefore, any y can be used to obtain the probabilityp(y|ωi).
When p(y|ωi) approximates to 0.5, ωi is weekly related for clas-
sification; When it approximates to 0 or 1, ωi is strongly related
for classification. Therefore, we give the mapping function to
calculate the weight θi.

θi = |1 − 2p(y|ωi)| θi ∈ [0, 1] (4)

Substituting Eq. (4) into Eq. (1), the weighted paragraph vector
can be obtained.

We implement the classifier using an SVM with an RBF ker-
nel. The SVM is trained by weighted paragraph vectors, which
result in a better classification. The details of the results are given
in the next section.

5. Evaluation Experiments

In this section, we evaluate our event-record-classification al-
gorithm, the capability of event data extraction by a combina-
tion of the web data extraction algorithm and the event-record-
classification algorithm, and we show a demonstration experi-
ment to discuss the feasibility of Event.Locky. First, the event
classifier must be trained. For event-record-classification evalua-
tion, we manually labeled 23,000 records as training data, which
are extracted from top-pages and their sub-pages of 96 shops in
our web data extraction algorithm. These 96 shops are located in
UNIMALL and ESCA [31], two underground shopping streets at
the railway station in Nagoya, Japan. We use these training data
to pre-training Word2Vec and our Event-Record-Classification
algorithms. Second, we use about 4,000 of 23,000 records, which
are extracted from top-pages of 96 shops, to evaluate event-data-
extraction algorithms. Third, we develop a demonstration system
to evaluate the feasibility when Event.Locky runs at actual Inter-
net environment.

5.1 Results Comparison of Event-Record-Classification Al-
gorithms

Note that we re-checked data set from previous studies [32],
[33]. We adopted cross validation that sets 90% as the train-
ing dataset and 10% as the test dataset. We used Japanese mor-
phological analyzer Kuromoji [34] for word segmentation and an
open source library SVM, LIBSVM [35], developed by Chang et
al. [36] as the classifier. The evaluation of the classification algo-
rithms involved precision, a recall, and a F1 score.

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Table 2 The evaluation of precision, recall and F1 score of each model (We
do parameter optimizations for each C and γ. It scan logarithm of
C and γ until achieve best F1).

Model log2C log2γ Prec. Rec. F1

ONE-HOT 4 −6 81.62% 79.42% 80.51%

W2V MEAN 5 1 86.92% 88.70% 87.80%

PVDM 5 1 88.46% 88.94% 88.70%

PVDM x10 8 1 88.73% 89.32% 89.03%

Ours 6 1 92.48% 90.46% 91.61%

Fig. 7 The F1 Score Transition of Models in each 1,000 Training Data. The
vertical axis is F1-score of each algorithm. The horizontal axis is
size of training set.

We implemented and compared the One-Hot Representation
model, Word2Vec Mean Vector model, PVDM, and our Weighted
Mean Vector model. The mapped paragraph vectors and their tar-
get variables were inputted into the SVM for supervised training.
The kernel function we adopted was the RBF. The RBF kernel
has two undetermined parameters - the penalty factor C and the
influence factor γ. Each parameter was tuned by parameter opti-
mization to find the best F1 score in each model.

Table 2 lists the experiment results. There was a significant
improvement when a distributed representation was adopted in-
stead of one representation. From the data, we can see PVDM
is significantly better than One-hot Representation, and perform
at the same level as Word2Vec Mean Vector. There has to be
mentioned an important feature of event records on the webpage.
These event records are short as one or two sentences, even a
phrase. From Fig. 7, we can see when the model is trained in few
words, the convergence of PVDM is not complete. The classifi-
cation results are not satisfactory. For a complete convergence,
we did a repetitive training experiment (PVDM x10) that trains
each paragraph in 10 loops. We can see a marked improvement
in a small training size. On the other hand, based on Word2Vec,
PVDM solves some semantic problems. Nevertheless, it lacks an
optimization for a specific classification task. Our method solves
this lack through weighting for each word on a given class. As a
result, our method achieves a higher F1-score than others. Our al-
gorithm is more specifically suited to our event data classification
task.

5.2 Results Comparison of Web-Data-Extraction Algo-
rithms

The crawler of Event.Locky is developed in a Java library
jsoup [37]. It is used to download webpages from the Internet
as HTML documents. The downloaded webpages are sent to our

Table 3 The evaluation event record extraction capability. We calculate the
precision, recall and F1 score of each web-data-extraction algo-
rithm.

Model Prec. Rec. F1

VIPS 89.89% 40.23% 55.58%

DEPTA 98.72% 70.98% 82.36%

ours without
backtracking

98.72% 70.98% 82.36%

ours with
backtracking

98.76% 73.02% 83.96%

web-data-record-extraction algorithm.
The web-data-record extraction algorithm is a module in the

Event.Locky system. The evaluation of the web-data-record ex-
traction algorithm should aim to be independent of other mod-
ules and based on final event records extraction results. All other
modules being equal, we evaluate the web-data-record extraction
by comparing each event records extraction result on each web-
data-record extraction algorithm. Therefore, from results com-
parison of event-record-classification algorithms in Section 5.1,
we choose the most suitable one, our algorithm, to be a combina-
tion with each web-data extraction algorithm. Then, we evaluate
the final event extraction result on each web-data-record extrac-
tion algorithm. In this experiment, we compare VIPS, DEPTA
and our web-data-record extraction algorithm. For quantitative
evaluation of ‘backtracking’, we divide our algorithm into two
experiments: the algorithm without backtracking and another al-
gorithm with backtracking.

As shown in Table 3, we can see our algorithm got the similar
F1-score from DEPTA without the backtracking process. Without
backtracking, our algorithm achieves the same level of DEPTA.
The pruning processing and partial tree matching before back-
tracking provide the formatted data structure for backtracking.
The backtracking processing improves the recall by 2.04% and
the F1 score by 1.6% from DEPTA. Analyzing the reason of a
higher F1-score depends on the independent event-record extrac-
tion by backtracking processing. For example, on the webpage
‘komeda [38]’, when the list on the right side is extracted by par-
tial tree matching, a larger banner on the left side can be extracted
by backtracking.

We compare with with the experiment of the event-record-
classification algorithm, and analyze the reason the reason why
the precision is higher than the event record classification experi-
ment but the recall is lower than it. Because the density of event
record in top-pages is much greater than that in sub-pages, it has
a higher hit ratio. In summary, this experiment verified the com-
bination method we proposed is more suitable to an event data
extraction task.

5.3 Demonstration Experiment
We developed an application of Event.Locky to validate its fea-

sibility. Our aim is to publish event data for mobile users at any-
time and anyplace throughout Japan. Figure 8 shows the sys-
tem flow. The application on mobile devices sends device loca-
tion information, which is obtained with the built-in GPS sensor
or indicated by the user to the server (step 1). Then the server
searches nearby organizations’ information including their coor-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 8 Flow of Event.Locky Demonstration Application.

dinates, addresses, website URLs, and the type from the search
engine Google Places [39] (step 2). Next, the server requests
these websites and downloads their webpages by using an inner
crawler (steps 3 and 4). Because there may be multiple search
results, the crawler is designed to be a multi-threading program
that can download webpages from all the organizations simulta-
neously. After that, our event-record-extraction algorithm works
on the web documents (step 5). Finally, the server sends the event
records to the user client and displays these records on the mobile
device (step 6). It is worth mentioning that except implementing
texts of event records extraction, we also implemented the extrac-
tions of times, images, and hyperlinks from event records.

The server of Event.Locky is deployed at a public data center
with two Intel Xeon E3 CPUs and 2 GB memory. The programs
were written in Java and run in Apache Tomcat 8 with Open-JDK
8.0. The maximum network throughput is 100 Mbps. The client
runs on the iPhone 6 plus with 54-Mbps Wifi network. The com-
munication between the server and the client passes through the
Internet.

Figure 9 shows the client application main interfaces of
Event.Locky. We categorized event data according to the type
of organization into four main categories – Exhibiton (muse-
ums, parks, galleries etc.), Gourmet (restaurants, cafes, bars etc.),
Shopping (malls, stores, markets etc.) and Amusement (bowling
alleys, cinemas, clubs etc.). We began by testing the process-
ing time of Event.Locky at train stations of ten cities in Japan.
At each area event data is extracted in the four categories (Exhi-
bition, Gourmet, Shopping and Amusement) and the processing
time is counted.

The retrieval processing times [s] are shown in Fig. 10 in sec-
onds. The average retrieval time was 2.1 s for Exhibition, 1.84 s
for Gourmet, 2.44 s for Shopping and 4.61 s for Amusement for
each organization. We argue that these are acceptable results for
users. The geographical distance does not evidently impact re-
trieval time. The bottleneck is on the crawler when analyzing the
delay in the retrieval time. Some organizations were unable to
provide normal services due to the fact that their websites were
not updated, which lead to crawler timeout. By upgrading the
bandwidth and network performance, this problem can be prop-
erly solved. Nonetheless, our event-data-extraction algorithm has
a sufficient capacity to support high-speed online retrieval.

5.4 Limitations
We focused on event-data extraction by using web mining tech-

niques. The main methods of information extraction are based
on text classification. We also found that some event informa-
tion on webpages is presented as multimedia data (such as event

Fig. 9 Main Interfaces of Event.Locky Demonstration Application. (a)
Markers with the number of event records of organizations on elec-
tronic map; Searching coordinate set at the center of the map; de-
faults to the current location obtained from a GPS sensor. Can also
be indicated by dragging on the map. (b) Detailed event records list
from touching a marker; event records are sorted by time. We also
implemented time extraction by the regular expression and the image
extraction from HTML tags.

Fig. 10 Processing Time at Train Stations or Downtowns of 10 Cities in
Japan.

images and animation of event advertisement). In this case, a
limitation of the text method is that multimedia event data can
not be extracted. Combining image processing and deep learn-
ing with web mining may be promising to address this limitation.
Our algorithm may provide mass training data about images and
the related text in records. It properly supports image capture ap-
proaches, which automatically generate the description text from
images.

Another limitation is regarding language. Tourist who have no
knowledge of the area find it difficult to obtain event data. For in-
stance, as the 2020 Tokyo Olympic Games approach, the foreign
tourists will increase. However, due to the fact that most web-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

pages in Japan are in Japanese, the event data will not directly
benefit foreign tourists. We need to solve this language problem
by adopting machine translation techniques.

6. Conclusion

We proposed a feasible online event data extraction system
called Event.Locky, which extracts event data from organiza-
tion webpages and displays event records on mobile devices as
spatial-temporal data. Event.Locky makes it possible to collect
and reuse event data from orgnizations webpages in a geographi-
cal area.

We obtained three key experiments to evaluate the feasibility
of Event.Locky. First, for converting semi-structured web docu-
ments into processable structured data, we implemented our web-
data-record extraction algorithm.

Through an experiment involving webpages of 96 shops
at Nagoya station, our event-classification algorithm achieved
an F1 score of 91.61%, an increase of 3.07% from current
event-classification algorithms. The combinations of our event-
classification algorithm and our data-record-extraction algorithm
achieved the F1 score 83.96% to extract event records from web-
pages. That increased 1.6% from the current algorithm. Finally,
we discuss the feasibility of Event.Locky in an actual online en-
vironment through the implementation of a demonstration appli-
cation.

For future work, we will investigate multimedia event-data ex-
traction from webpages and attempt to combine image processing
techniques (such as deep learning and optical character recogni-
tion) with web mining. We will also implement event-image ex-
traction. For non-Japanese speakers, we will investigate machine
translation techniques that will help them obtain valuable event
data.

References

[1] ATND (online), available from 〈https://atnd.org/〉 (accessed 2016-04-
27).

[2] Peatix (online), available from 〈http://peatix.com/〉 (accessed 2016-04-
27).

[3] Hila, B., Mor, N. and Luis, G.: Beyond Trending Topics: Real-world
Event Identification on Twitter (2011).

[4] Watanabe, K., Ochi, M. and Okabe, M.: Jasmine: A Real-time Local-
event Detection System Based on Geolocation Information Propa-
gated to Microblogs, Proc. 20th ACM International Conference on
Information and Knowledge Management, pp.2541–2544 (2011).

[5] Hamed, A., Christian, S. and Michael, G.: Eventweet: Online Local-
ized Event Detection from Twitter, Proc. VLDB Endowment, pp.1326–
1329 (2013).

[6] Cristobal, R. and Sebastian, V.: Educational Data Mining: A Survey
from 1995 to 2005, Expert Systems with Applications, Vol.33, No.1,
pp.135–146 (2007).

[7] Ferrara, E., Meo, P., Fiumara, G. and Baumgartner, R.: Web Data Ex-
traction, Applications and Techniques: A Survey, Knowledge-Based
Systems, pp.301–323 (2014).

[8] Jussi, M.: Effective Web Data Extraction with Standard XML Tech-
nologies, Computer Networks, Vol.39, No.5, pp.635–644 (2002).

[9] Robert, B., Sergio, F. and Georg, G.: Visual Web Information Extrac-
tion with LIXTO, VLDB, pp.119–128 (2001).

[10] Lin, S. and Ho, J.: Discovering Informative Content Blocks from Web
Documents, Proc. ACM SIGKDD’02 (2002).

[11] Crivellari, F. and Melucci, M.: Web Document Retrieval Using
Passage Retrieval, Connectivity Information, and Automatic Link
weighted, 9th Text Retrieval Conference (TREC-9) (2000).

[12] Kovacevic, M., Diligenti, M., Gori, M. and Milutinovic, V.: Recog-
nition of Common Areas in A Web Page Using Visual Information:
A Possible Application in A Page Classification, ICDM 2003, Proc.

2002 IEEE International Conference, pp.250–257 (2002).
[13] Cai, D., Yu, S., Wen, J. and Ma, W.: VIPS: A Vision-based Page Seg-

mentation Algorithm, Microsoft Technical Report, MSR-TR-2003-79
(2003).

[14] Cai, D., Yu, S., Wen, J. and Ma, W.: Extracting content structure for
web pages based on visual representation, Web Technologies and Ap-
plications, pp.406–417, Springer Berlin Heidelberg (2003).

[15] VIPS (online), available from 〈https://github.com/tpopela/vips java〉
(accessed 2015-09-11).

[16] Zhai, Y. and Liu, B.: Web Data Extraction Based on Partial Tree
Alignment, Proc. International Conference on World Wide Web
(WWW 2005), pp.76–85 (2005).

[17] Zhai, Y. and Liu, B.: Structured Data Extraction From the Web Based
on Partial Tree Alignment, IEEE Trans. Knowledge and Data Engi-
neering, pp.1614–1628 (2006).

[18] DEPTA (online), available from 〈https://github.com/seagatesoft/sde/〉
(accessed 2015-09-11).

[19] Jie, J., Chan, T. and Zhao, Q.: Clustering Large Sparse Text Data: A
Comparative Advantage Approach, Journal of Information Process-
ing, pp.242–251 (2010).

[20] Mikolov, T., Chen, K., Corrado, G. and Dean, J.: Efficient Estima-
tion of Word Representations in Vector Space, arXiv preprint arXiv,
pp.1301–3781 (2013).

[21] Mikolov, T., Sutskever, I., Chen, K. and Corrado, G.: Distributed
Representations of Words and Phrases and Their Compositionality,
Advances in Neural Information Processing Systems, pp.3111–3119
(2013).

[22] Mikolov, T., Le, Q.V. and Sutskever, I.: Exploiting Similarities Among
Languages for Machine Translation, arXiv preprint arXiv, pp.1309–
4168 (2013).

[23] Le, Q. and Mikolov, T.: Distributed Representations of Sentences
and Documents, Proc. 31st Intl. Conference on Machine Learning,
pp.1188–1196 (2014).

[24] Lewis, D.D.: Naive (Bayes) at Forty: The Independence Assump-
tion in Information Retrieval, Machine Learning ECML-98, pp.4–15
(1998).

[25] Yiming, Y. and Xin, L.: A Re-examination of Text Categorization
Methods, Proc. 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp.42–49, ACM
(1999).

[26] Thorsten, J.: Text Categorization with Support Vector Machines:
Learning with Many Relevant Features, Springer Berlin Heidelberg
(1998).

[27] Fabrizio, S.: Machine Learning in Automated Text Categorization,
ACM Computing Surveys (CSUR), Vol.34, No.1, pp.1–47 (2002).

[28] NYC Park (online), available from 〈http://www.nycgovparks.org/
events/〉 (accessed 2015-11-01).

[29] RFC1866 (online), available from 〈http://www.ietf.org/rfc/
rfc1866.txt〉 (accessed 2016-04-27).

[30] NYAS (online), available from 〈http://www.nyas.org/〉 (accessed
2015-11-01).

[31] Nagoya Station (online), available from 〈http://www.meieki.com/
station sa.php〉 (accessed 2015-04-20).

[32] Liao, C., Kaji, K., Hiroi, K. and Kawaguchi, N.: An Event Data Ex-
traction Method Based on HTML Structure Analysis and Machine
Learning, Computer Software and Applications Conference (COMP-
SAC), 2015 IEEE 39th Annual, pp.217–222, IEEE (2015).

[33] Liao, C., Kaji, K., Hiroi, K. and Kawaguchi, N.: HTML A Propor-
tion of Event Data Extraction based on HTML Structure Analysis and
Machine Learning, Ubiquitous Computing System, pp.1–7 (2015). (In
Japanese)

[34] Kuromoji (online), available from 〈http://www.atilika.org/〉 (accessed
2015-09-03).

[35] LIBSVM (online), available from 〈http://www.csie.ntu.edu.tw/ cjlin/
libsvm/〉 (accessed 2015-09-27).

[36] Chang, C.C. and Lin, C.J.: LIBSVM: A Library for Support Vector
Machines, ACM Trans. Intelligent Systems and Technology (TIST),
pp.1–39 (2011).

[37] JSOUP (online), available from 〈http://jsoup.org/〉 (accessed 2015-09-
03).

[38] Komeda (online), available from 〈http://www.komeda.co.jp/〉 (ac-
cessed 2016-03-07).

[39] Google Places (online), available from 〈https://developers.google.
com/places/〉 (accessed 2015-09-01).

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Chenyi Liao was born in 1987. He is
a doctoral student in Graduate School of
Engineering, Nagoya University and has
been engaged in the Information Process-
ing Society of Japan since 2011. His re-
search interest is data mining and natural
language processing. He is a member of
the IEEE.

Kei Hiroi received her B.S. degree in En-
gineering in 2004 from Tohoku Univer-
sity. She worked NTT EAST from 2004
to 2011. She received her Master of Me-
dia Design and Ph.D. in Media Design in
2011 and 2014, respectively from Keio
University. From 2014, she has been a
designated assistant professor in the Insti-

tute of Innovation for Future Society, Nagoya University.

Katsuhiko Kaji received his Ph.D. in in-
formation science from Nagoya Univer-
sity in 2007. He became a RA at NTT
Communication Science Laboratories in
2007 and an assistant professor in Nagoya
University in 2010. Currently, he is as-
sociate professor of Faculty of Informa-
tion Science, Aichi Institute of Technol-

ogy from 2015. His research interests include indoor positioning
and remote interaction. He is a member of JSSST.

Ken Sakurada received the B.E., M.E.,
and Ph.D. degrees from Tohoku univer-
sity, Japan, in 2009, 2011, and 2015 re-
spectively. He is currently an Assistant
Professor at the Graduate School of En-
gineering, Nagoya university. From April
2013 to March 2014, he was a visiting
researcher at Robotics Institute, Carnegie

Mellon University, PA, USA. His research interests are in com-
puter vision, remote sensing, and robotics. From April 2012 to
March 2014, he was a recipient of the Research Fellowship of
JSPS.

Nobuo Kawaguchi received his B.E.,
M.E. and Ph.D. in Computer Science
from Nagoya University, Japan, in 1990,
1992, and 1995, respectively. From 1995
he was an associate professor in the
Department of Electrical and Electronic
Engineering and Information Engineer-
ing, School of Engineering, Nagoya

University. Since 2009, he has been a professor in the department
of Computational Science and Engineering, Graduate School of
Engineering, Nagoya University. His research interests are in
the areas of Human Activity Recognition, Smart Environmental
System and Ubiquitous Communication Systems.

c© 2017 Information Processing Society of Japan


