WEKO3
アイテム
動作認識のための合成データ活用に向けたドメイン適応手法の比較
https://ipsj.ixsq.nii.ac.jp/records/213080
https://ipsj.ixsq.nii.ac.jp/records/213080e55a5332-9dbd-4b19-974f-b961e07d8c1b
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Symposium(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-06-23 | |||||||||||||
タイトル | ||||||||||||||
タイトル | 動作認識のための合成データ活用に向けたドメイン適応手法の比較 | |||||||||||||
言語 | ||||||||||||||
言語 | jpn | |||||||||||||
キーワード | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | AI | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||
資源タイプ | conference paper | |||||||||||||
著者所属 | ||||||||||||||
お茶の水女子大学 | ||||||||||||||
著者所属 | ||||||||||||||
国立情報学研究所 | ||||||||||||||
著者所属 | ||||||||||||||
産業技術総合研究所 | ||||||||||||||
著者所属 | ||||||||||||||
お茶の水女子大学 | ||||||||||||||
著者名 |
礒井, 葉那
× 礒井, 葉那
× 竹房, あつ子
× 中田, 秀基
× 小口, 正人
|
|||||||||||||
論文抄録 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | ディープニューラルネットワークの進歩に伴う学習データ不足の問題について様々な議論が行われており,その解決策の 1 つに合成データを利用した学習がある.合成データには生成が比較的容易であるという利点があるが,合成データを用いて学習したモデルには,実データ解析時にドメインシフトによって解析精度が低下するという課題がある.本研究では,合成動画像データを活用した高精度な実動画像データ識別の実現を目的とし,写実的な合成動画像データを用いて 3D ResNet と TSN をベースとするモデルでそれぞれ学習し,その動作識別精度を比較した. 実験の結果,合成データと実データの特徴の違いはモーションよりも色や形状,質感にあること,オプティカルフローを用いる TSN ベースのモデルの方が高精度に実データの動作識別が可能であることがわかった. | |||||||||||||
書誌情報 |
マルチメディア,分散協調とモバイルシンポジウム2021論文集 巻 2021, 号 1, p. 1289-1297, 発行日 2021-06-23 |
|||||||||||||
出版者 | ||||||||||||||
言語 | ja | |||||||||||||
出版者 | 情報処理学会 |