ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.58
  3. No.8

On the Metric Dimension of Biregular Graph

https://ipsj.ixsq.nii.ac.jp/records/183003
https://ipsj.ixsq.nii.ac.jp/records/183003
70f374d8-4a70-46a3-8c1e-5c2838b8cc67
名前 / ファイル ライセンス アクション
IPSJ-JNL5808017.pdf IPSJ-JNL5808017.pdf (124.5 kB)
Copyright (c) 2017 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2017-08-15
タイトル
タイトル On the Metric Dimension of Biregular Graph
タイトル
言語 en
タイトル On the Metric Dimension of Biregular Graph
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:離散と計算の幾何・グラフ・ゲーム] (μ, σ)-regular graph, basis, metric dimension, resolving set
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
著者所属(英)
en
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
著者名 Suhadi, Wido Saputro

× Suhadi, Wido Saputro

Suhadi, Wido Saputro

Search repository
著者名(英) Suhadi, Wido Saputro

× Suhadi, Wido Saputro

en Suhadi, Wido Saputro

Search repository
論文抄録
内容記述タイプ Other
内容記述 The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.25(2017) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.25.634
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.25(2017) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.25.634
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 58, 号 8, 発行日 2017-08-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 03:50:35.232978
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3