WEKO3
-
RootNode
アイテム
On the Metric Dimension of Biregular Graph
https://ipsj.ixsq.nii.ac.jp/records/183003
https://ipsj.ixsq.nii.ac.jp/records/18300370f374d8-4a70-46a3-8c1e-5c2838b8cc67
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2017 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2017-08-15 | |||||||
タイトル | ||||||||
タイトル | On the Metric Dimension of Biregular Graph | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | On the Metric Dimension of Biregular Graph | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | [特集:離散と計算の幾何・グラフ・ゲーム] (μ, σ)-regular graph, basis, metric dimension, resolving set | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung | ||||||||
著者名 |
Suhadi, Wido Saputro
× Suhadi, Wido Saputro
|
|||||||
著者名(英) |
Suhadi, Wido Saputro
× Suhadi, Wido Saputro
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.634 ------------------------------ |
|||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G) such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we consider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected (μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ µ ≤ n-1 and σ=n-1. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.634 ------------------------------ |
|||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN00116647 | |||||||
書誌情報 |
情報処理学会論文誌 巻 58, 号 8, 発行日 2017-08-15 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-7764 |