ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.55
  3. No.2

SIP Flooding Attack Detection Using a Trust Model and Statistical Algorithms

https://ipsj.ixsq.nii.ac.jp/records/98504
https://ipsj.ixsq.nii.ac.jp/records/98504
ec2375dc-b212-4e0c-af29-573f5d0c5860
名前 / ファイル ライセンス アクション
IPSJ-JNL5502028.pdf IPSJ-JNL5502028 (1.2 MB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2014-02-15
タイトル
タイトル SIP Flooding Attack Detection Using a Trust Model and Statistical Algorithms
タイトル
言語 en
タイトル SIP Flooding Attack Detection Using a Trust Model and Statistical Algorithms
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:ネットワークサービスと分散処理] IMS, security, flooding attack, statistical analysis, trust
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Nara Institute of Science and Technology
著者所属
Nara Institute of Science and Technology
著者所属
Nara Institute of Science and Technology
著者所属
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者名 Noppawat, Chaisamran

× Noppawat, Chaisamran

Noppawat, Chaisamran

Search repository
Takeshi, Okuda

× Takeshi, Okuda

Takeshi, Okuda

Search repository
Youki, Kadobayashi

× Youki, Kadobayashi

Youki, Kadobayashi

Search repository
Suguru, Yamaguchi

× Suguru, Yamaguchi

Suguru, Yamaguchi

Search repository
著者名(英) Noppawat, Chaisamran

× Noppawat, Chaisamran

en Noppawat, Chaisamran

Search repository
Takeshi, Okuda

× Takeshi, Okuda

en Takeshi, Okuda

Search repository
Youki, Kadobayashi

× Youki, Kadobayashi

en Youki, Kadobayashi

Search repository
Suguru, Yamaguchi

× Suguru, Yamaguchi

en Suguru, Yamaguchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 The IP Multimedia Subsystem (IMS) has been constantly evolving to meet the tremendous rise in popularity of mobile services and Internet applications. Since IMS uses Session Initiation Protocol as the main protocol to control a signal, it inherits numerous known security vulnerabilities. One of the most severe issues is the Denial of Service attack. To address this problem, we introduce an anomaly-based detection system using the Tanimoto distance to identify deviations in the traffic. A modified moving average is applied to compute an adaptive threshold. To overcome a drawback of the adaptive threshold method, we present a momentum oscillation indicator to detect a gradually increasing attack. Generally, anomaly-based detection systems trigger many alarms and most of them are false positives that impact the quality of the detection. Therefore, we first present a false positive reduction method by using a trust model. A reliable trust value is calculated through the call activities and the human behavior of each user. The system performance is evaluated by using a comprehensive synthetic dataset containing various malicious traffic patterns. The experimental results show that this system accurately identified attacks and has the flexibility to deal with many types of attack patterns with a low false alarm.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.22(2014) No.2 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.22.118
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 The IP Multimedia Subsystem (IMS) has been constantly evolving to meet the tremendous rise in popularity of mobile services and Internet applications. Since IMS uses Session Initiation Protocol as the main protocol to control a signal, it inherits numerous known security vulnerabilities. One of the most severe issues is the Denial of Service attack. To address this problem, we introduce an anomaly-based detection system using the Tanimoto distance to identify deviations in the traffic. A modified moving average is applied to compute an adaptive threshold. To overcome a drawback of the adaptive threshold method, we present a momentum oscillation indicator to detect a gradually increasing attack. Generally, anomaly-based detection systems trigger many alarms and most of them are false positives that impact the quality of the detection. Therefore, we first present a false positive reduction method by using a trust model. A reliable trust value is calculated through the call activities and the human behavior of each user. The system performance is evaluated by using a comprehensive synthetic dataset containing various malicious traffic patterns. The experimental results show that this system accurately identified attacks and has the flexibility to deal with many types of attack patterns with a low false alarm.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.22(2014) No.2 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.22.118
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 55, 号 2, 発行日 2014-02-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 06:47:08.504524
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3