ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. Computer Vision and Applications(CVA)
  3. Vol.5

Hyperaccurate Correction of Maximum Likelihood for Geometric Estimation

https://ipsj.ixsq.nii.ac.jp/records/91722
https://ipsj.ixsq.nii.ac.jp/records/91722
a3e2801f-3956-4836-a01a-48d858e7821f
名前 / ファイル ライセンス アクション
IPSJ-TCVA0500003.pdf IPSJ-TCVA0500003.pdf (534.2 kB)
Copyright (c) 2013 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2013-04-11
タイトル
タイトル Hyperaccurate Correction of Maximum Likelihood for Geometric Estimation
タイトル
言語 en
タイトル Hyperaccurate Correction of Maximum Likelihood for Geometric Estimation
言語
言語 eng
キーワード
主題Scheme Other
主題 [Regular Paper - Pesearch Paper] geometric estimation,maximum likelihood,bias estimation,hyperaccurate correction
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Department of Computer Science, Okayama University
著者所属
Department of Computer Science and Engineering, Toyohashi University of Technology
著者所属(英)
en
Department of Computer Science, Okayama University
著者所属(英)
en
Department of Computer Science and Engineering, Toyohashi University of Technology
著者名 Kenichi, Kanatani Yasuyuki, Sugaya

× Kenichi, Kanatani Yasuyuki, Sugaya

Kenichi, Kanatani
Yasuyuki, Sugaya

Search repository
著者名(英) Kenichi, Kanatani Yasuyuki, Sugaya

× Kenichi, Kanatani Yasuyuki, Sugaya

en Kenichi, Kanatani
Yasuyuki, Sugaya

Search repository
論文抄録
内容記述タイプ Other
内容記述 The best known method for optimally computing parameters from noisy data based on geometric constraints is maximum likelihood (ML). This paper reinvestigates “hyperaccurate correction” for further improving the accuracy of ML. In the past, only the case of a single scalar constraint was studied. In this paper, we extend it to multiple constraints given in the form of vector equations. By detailed error analysis, we illuminate the existence of a term that has been ignored in the past. Doing simulation experiments of ellipse fitting, fundamental matrix, and homography computation, we show that the new term does not effectively affect the final solution. However, we show that our hyperaccurate correction is even superior to hyper-renormalization, the latest method regarded as the best fitting method, but that the iterations of ML computation do not necessarily converge in the presence of large noise.
論文抄録(英)
内容記述タイプ Other
内容記述 The best known method for optimally computing parameters from noisy data based on geometric constraints is maximum likelihood (ML). This paper reinvestigates “hyperaccurate correction” for further improving the accuracy of ML. In the past, only the case of a single scalar constraint was studied. In this paper, we extend it to multiple constraints given in the form of vector equations. By detailed error analysis, we illuminate the existence of a term that has been ignored in the past. Doing simulation experiments of ellipse fitting, fundamental matrix, and homography computation, we show that the new term does not effectively affect the final solution. However, we show that our hyperaccurate correction is even superior to hyper-renormalization, the latest method regarded as the best fitting method, but that the iterations of ML computation do not necessarily converge in the presence of large noise.
書誌情報 IPSJ Transactions on Computer Vision and Applications (CVA)

巻 5, p. 19-29, 発行日 2013-04-11
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6695
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 15:19:42.240898
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3