ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2013
  4. 2013-MPS-092

Exhaustive Search of Feature Subsets for Support Vector Machine Classification

https://ipsj.ixsq.nii.ac.jp/records/90427
https://ipsj.ixsq.nii.ac.jp/records/90427
b84911d9-6233-402d-85d1-f05a0ea05da0
名前 / ファイル ライセンス アクション
IPSJ-MPS13092008.pdf IPSJ-MPS13092008.pdf (1.2 MB)
Copyright (c) 2013 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2013-02-20
タイトル
タイトル Exhaustive Search of Feature Subsets for Support Vector Machine Classification
タイトル
言語 en
タイトル Exhaustive Search of Feature Subsets for Support Vector Machine Classification
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Frontier Sciences, The University of Tokyo
著者所属
Graduate School of Frontier Sciences, The University of Tokyo
著者所属
Nikon Corporation
著者所属
Graduate School of Frontier Sciences, The University of Tokyo
著者所属
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
著者所属
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
著者所属
Graduate School of Frontier Sciences, The University of Tokyo/RIKEN Brain Science Institute
著者所属(英)
en
Graduate School of Frontier Sciences, The University of Tokyo
著者所属(英)
en
Graduate School of Frontier Sciences, The University of Tokyo
著者所属(英)
en
Nikon Corporation
著者所属(英)
en
Graduate School of Frontier Sciences, The University of Tokyo
著者所属(英)
en
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
著者所属(英)
en
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
著者所属(英)
en
Graduate School of Frontier Sciences, The University of Tokyo / RIKEN Brain Science Institute
著者名 Jun, Kitazono Kenji, Nagata Shinichi, Nakajima Akira, Manda Satoshi, Eifuku Ryoi, Tamura Masato, Okada

× Jun, Kitazono Kenji, Nagata Shinichi, Nakajima Akira, Manda Satoshi, Eifuku Ryoi, Tamura Masato, Okada

Jun, Kitazono
Kenji, Nagata
Shinichi, Nakajima
Akira, Manda
Satoshi, Eifuku
Ryoi, Tamura
Masato, Okada

Search repository
著者名(英) Jun, Kitazono Kenji, Nagata Shinichi, Nakajima Akira, Manda Satoshi, Eifuku Ryoi, Tamura Masato, Okada

× Jun, Kitazono Kenji, Nagata Shinichi, Nakajima Akira, Manda Satoshi, Eifuku Ryoi, Tamura Masato, Okada

en Jun, Kitazono
Kenji, Nagata
Shinichi, Nakajima
Akira, Manda
Satoshi, Eifuku
Ryoi, Tamura
Masato, Okada

Search repository
論文抄録
内容記述タイプ Other
内容記述 Feature selection in machine learning is an important process for improving the generalization capability and interpretability of learned models through the selection of a relevant feature subset. In the last two decades, a number of feature selection methods, such as L1 regularization and automatic relevance determination have been intensively developed and used in a wide range of areas. We can select a relevant subset of features, by using these feature selection methods. In this study, we apply an exhaustive search, instead of these methods, to the neural data recorded in the area of brain involved in face recognition. We evaluate how accurately every subset of recorded neurons can discriminate faces, by using SVM classifiers and cross validation. We show that there are a number of highly accurate neuron subsets. All of these results demonstrate that we should not select only one feature subset but exhaustively evaluate every feature subset.
論文抄録(英)
内容記述タイプ Other
内容記述 Feature selection in machine learning is an important process for improving the generalization capability and interpretability of learned models through the selection of a relevant feature subset. In the last two decades, a number of feature selection methods, such as L1 regularization and automatic relevance determination have been intensively developed and used in a wide range of areas. We can select a relevant subset of features, by using these feature selection methods. In this study, we apply an exhaustive search, instead of these methods, to the neural data recorded in the area of brain involved in face recognition. We evaluate how accurately every subset of recorded neurons can discriminate faces, by using SVM classifiers and cross validation. We show that there are a number of highly accurate neuron subsets. All of these results demonstrate that we should not select only one feature subset but exhaustively evaluate every feature subset.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2013-MPS-92, 号 8, p. 1-6, 発行日 2013-02-20
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 16:01:51.862914
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3