ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.53
  3. No.5

Modeling Patent Quality: A System for Large-scale Patentability Analysis using Text Mining

https://ipsj.ixsq.nii.ac.jp/records/82250
https://ipsj.ixsq.nii.ac.jp/records/82250
f63823cf-b36f-49e2-944b-d9f45742417c
名前 / ファイル ライセンス アクション
IPSJ-JNL5305018.pdf IPSJ-JNL5305018 (900.9 kB)
Copyright (c) 2012 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2012-05-15
タイトル
タイトル Modeling Patent Quality: A System for Large-scale Patentability Analysis using Text Mining
タイトル
言語 en
タイトル Modeling Patent Quality: A System for Large-scale Patentability Analysis using Text Mining
言語
言語 eng
キーワード
主題Scheme Other
主題 [Special Issue on Theory and Application of Intelligent Information Technology] patent quality index, patentability, document classification
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Analytics & Intelligence, IBM Research - Tokyo/Presently with Preferred Infrastructure, Inc.
著者所属
Analytics & Intelligence, IBM Research - Tokyo
著者所属
Analytics & Intelligence, IBM Research - Tokyo
著者所属
Analytics & Intelligence, IBM Research - Tokyo
著者所属
Analytics & Intelligence, IBM Research - Tokyo
著者所属
Analytics & Intelligence, IBM Research - Tokyo
著者所属
Analytics & Intelligence, IBM Research - Tokyo
著者所属
IP Law Department, IBM Japan
著者所属
IP Law Department, IBM Japan
著者所属
IP Law Department, IBM Japan
著者所属
Analytics & Intelligence, IBM Research - Tokyo/Presently with Yahoo! Japan
著者所属
Research Center for Advanced Science and Technology, The University of Tokyo
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo / Presently with Preferred Infrastructure, Inc.
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo
著者所属(英)
en
IP Law Department, IBM Japan
著者所属(英)
en
IP Law Department, IBM Japan
著者所属(英)
en
IP Law Department, IBM Japan
著者所属(英)
en
Analytics & Intelligence, IBM Research - Tokyo / Presently with Yahoo! Japan
著者所属(英)
en
Research Center for Advanced Science and Technology, The University of Tokyo
著者名 Shohei, Hido

× Shohei, Hido

Shohei, Hido

Search repository
Shoko, Suzuki

× Shoko, Suzuki

Shoko, Suzuki

Search repository
Risa, Nishiyama

× Risa, Nishiyama

Risa, Nishiyama

Search repository
Takashi, Imamichi

× Takashi, Imamichi

Takashi, Imamichi

Search repository
Rikiya, Takahashi

× Rikiya, Takahashi

Rikiya, Takahashi

Search repository
Tetsuya, Nasukawa

× Tetsuya, Nasukawa

Tetsuya, Nasukawa

Search repository
Tsuyoshi, Idé

× Tsuyoshi, Idé

Tsuyoshi, Idé

Search repository
Yusuke, Kanehira

× Yusuke, Kanehira

Yusuke, Kanehira

Search repository
Rinju, Yohda

× Rinju, Yohda

Rinju, Yohda

Search repository
Takeshi, Ueno

× Takeshi, Ueno

Takeshi, Ueno

Search repository
Akira, Tajima

× Akira, Tajima

Akira, Tajima

Search repository
Toshiya, Watanabe

× Toshiya, Watanabe

Toshiya, Watanabe

Search repository
著者名(英) Shohei, Hido

× Shohei, Hido

en Shohei, Hido

Search repository
Shoko, Suzuki

× Shoko, Suzuki

en Shoko, Suzuki

Search repository
Risa, Nishiyama

× Risa, Nishiyama

en Risa, Nishiyama

Search repository
Takashi, Imamichi

× Takashi, Imamichi

en Takashi, Imamichi

Search repository
Rikiya, Takahashi

× Rikiya, Takahashi

en Rikiya, Takahashi

Search repository
Tetsuya, Nasukawa

× Tetsuya, Nasukawa

en Tetsuya, Nasukawa

Search repository
Tsuyoshi, Idé

× Tsuyoshi, Idé

en Tsuyoshi, Idé

Search repository
Yusuke, Kanehira

× Yusuke, Kanehira

en Yusuke, Kanehira

Search repository
Rinju, Yohda

× Rinju, Yohda

en Rinju, Yohda

Search repository
Takeshi, Ueno

× Takeshi, Ueno

en Takeshi, Ueno

Search repository
Akira, Tajima

× Akira, Tajima

en Akira, Tajima

Search repository
Toshiya, Watanabe

× Toshiya, Watanabe

en Toshiya, Watanabe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Current patent systems face a serious problem of declining quality of patents as the larger number of applications make it difficult for patent officers to spend enough time for evaluating each application. For building a better patent system, it is necessary to define a public consensus on the quality of patent applications in a quantitative way. In this article, we tackle the problem of assessing the quality of patent applications based on machine learning and text mining techniques. For each patent application, our tool automatically computes a score called patentability, which indicates how likely it is that the application will be approved by the patent office. We employ a new statistical prediction model to estimate examination results (approval or rejection) based on a large data set including 0.3 million patent applications. The model computes the patentability score based on a set of feature variables including the text contents of the specification documents. Experimental results showed that our model outperforms a conventional method which uses only the structural properties of the documents. Since users can access the estimated result through a Web-browser-based GUI, this system allows both patent examiners and applicants to quickly detect weak applications and to find their specific flaws.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.20(2012) No.3 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.20.655
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Current patent systems face a serious problem of declining quality of patents as the larger number of applications make it difficult for patent officers to spend enough time for evaluating each application. For building a better patent system, it is necessary to define a public consensus on the quality of patent applications in a quantitative way. In this article, we tackle the problem of assessing the quality of patent applications based on machine learning and text mining techniques. For each patent application, our tool automatically computes a score called patentability, which indicates how likely it is that the application will be approved by the patent office. We employ a new statistical prediction model to estimate examination results (approval or rejection) based on a large data set including 0.3 million patent applications. The model computes the patentability score based on a set of feature variables including the text contents of the specification documents. Experimental results showed that our model outperforms a conventional method which uses only the structural properties of the documents. Since users can access the estimated result through a Web-browser-based GUI, this system allows both patent examiners and applicants to quickly detect weak applications and to find their specific flaws.

------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.20(2012) No.3 (online)
DOI http://dx.doi.org/10.2197/ipsjjip.20.655
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 53, 号 5, 発行日 2012-05-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 06:51:13.368360
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3