ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 自然言語処理(NL)
  3. 2010
  4. 2010-NL-198

Active Learning with Partially Annotated Sequence

https://ipsj.ixsq.nii.ac.jp/records/70312
https://ipsj.ixsq.nii.ac.jp/records/70312
62b9bcd8-921f-473e-b7ee-a0d0699f81df
名前 / ファイル ライセンス アクション
IPSJ-NL10198004.pdf IPSJ-NL10198004.pdf (330.1 kB)
Copyright (c) 2010 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2010-09-09
タイトル
タイトル Active Learning with Partially Annotated Sequence
タイトル
言語 en
タイトル Active Learning with Partially Annotated Sequence
言語
言語 eng
キーワード
主題Scheme Other
主題 学習・応用
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology
著者所属
Precision and Intelligence Laboratory, Tokyo Institute of Technology
著者所属
Precision and Intelligence Laboratory, Tokyo Institute of Technology
著者所属(英)
en
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology
著者所属(英)
en
Precision and Intelligence Laboratory, Tokyo Institute of Technology
著者所属(英)
en
Precision and Intelligence Laboratory, Tokyo Institute of Technology
著者名 Dittaya, Wanvarie Hiroya, Takamura Manabu, Okumura

× Dittaya, Wanvarie Hiroya, Takamura Manabu, Okumura

Dittaya, Wanvarie
Hiroya, Takamura
Manabu, Okumura

Search repository
著者名(英) Dittaya, Wanvarie Hiroya, Takamura Manabu, Okumura

× Dittaya, Wanvarie Hiroya, Takamura Manabu, Okumura

en Dittaya, Wanvarie
Hiroya, Takamura
Manabu, Okumura

Search repository
論文抄録
内容記述タイプ Other
内容記述 We propose an active learning framework which requires human annotation only in the ambiguous parts of the sequence. In each iteration of active learning, a set of tokens from the ambiguous parts are manually labeled while the other tokens are left unannotated. Our proposed method is superior to the method where unambiguous tokens are automatically labeled. We evaluate our proposed framework on chunking and named entity recognition data provided by CoNLL. Experimental results show that our proposed framework outperforms the previous work using automatically labeled tokens, and almost reaches the supervised F1 with 6.37% and 8.59% of tokens being manually labeled, respectively.
論文抄録(英)
内容記述タイプ Other
内容記述 We propose an active learning framework which requires human annotation only in the ambiguous parts of the sequence. In each iteration of active learning, a set of tokens from the ambiguous parts are manually labeled while the other tokens are left unannotated. Our proposed method is superior to the method where unambiguous tokens are automatically labeled. We evaluate our proposed framework on chunking and named entity recognition data provided by CoNLL. Experimental results show that our proposed framework outperforms the previous work using automatically labeled tokens, and almost reaches the supervised F1 with 6.37% and 8.59% of tokens being manually labeled, respectively.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10115061
書誌情報 研究報告自然言語処理(NL)

巻 2010-NL-198, 号 4, p. 1-7, 発行日 2010-09-09
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 23:30:30.010021
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3