ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2010
  4. 2010-MPS-079

Classification of Idiopathic Interstitial Pneumonia on High-resolution CT Images using Counter-propagation Network

https://ipsj.ixsq.nii.ac.jp/records/69784
https://ipsj.ixsq.nii.ac.jp/records/69784
4b2f019d-7b10-4832-bc0b-f0475692bba3
名前 / ファイル ライセンス アクション
IPSJ-MPS10079007.pdf IPSJ-MPS10079007.pdf (1.8 MB)
Copyright (c) 2010 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2010-07-05
タイトル
タイトル Classification of Idiopathic Interstitial Pneumonia on High-resolution CT Images using Counter-propagation Network
タイトル
言語 en
タイトル Classification of Idiopathic Interstitial Pneumonia on High-resolution CT Images using Counter-propagation Network
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University
著者所属
Graduate School of Informatics and Engineering, University of Electro-Communications
著者所属
Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University
著者所属(英)
en
Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University
著者所属(英)
en
Graduate School of Informatics and Engineering, University of Electro-Communications
著者所属(英)
en
Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University
著者名 Yuki, Tanaka Hayaru, Shouno Shoji, Kido

× Yuki, Tanaka Hayaru, Shouno Shoji, Kido

Yuki, Tanaka
Hayaru, Shouno
Shoji, Kido

Search repository
著者名(英) Yuki, Tanaka Hayaru, Shouno Shoji, Kido

× Yuki, Tanaka Hayaru, Shouno Shoji, Kido

en Yuki, Tanaka
Hayaru, Shouno
Shoji, Kido

Search repository
論文抄録
内容記述タイプ Other
内容記述 In order to classify the idiopathic interstitial pneumonias(IIPs), extraction and interpretation of features on high-resolution computed tomography (HRCT) image is considered to be effective. The purpose of our study is to develop a diagnosis support system to help diagnostician of classification for those HRCT images using an artificial neural network called counter propagation network. The CPN is a hybrid type neural network model composed from self-organizing map (SOM) for feature extraction and from multi-layered perceptron (MLP) for classification. Applying the CPN for the IIPs images, we could obtain both a kind of similarity map and classification system.
論文抄録(英)
内容記述タイプ Other
内容記述 In order to classify the idiopathic interstitial pneumonias(IIPs), extraction and interpretation of features on high-resolution computed tomography (HRCT) image is considered to be effective. The purpose of our study is to develop a diagnosis support system to help diagnostician of classification for those HRCT images using an artificial neural network called counter propagation network. The CPN is a hybrid type neural network model composed from self-organizing map (SOM) for feature extraction and from multi-layered perceptron (MLP) for classification. Applying the CPN for the IIPs images, we could obtain both a kind of similarity map and classification system.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2010-MPS-79, 号 7, p. 1-6, 発行日 2010-07-05
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 23:46:42.944039
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3