WEKO3
アイテム
Classification of Idiopathic Interstitial Pneumonia on High-resolution CT Images using Counter-propagation Network
https://ipsj.ixsq.nii.ac.jp/records/69784
https://ipsj.ixsq.nii.ac.jp/records/697844b2f019d-7b10-4832-bc0b-f0475692bba3
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
|
Copyright (c) 2010 by the Information Processing Society of Japan
|
|
| オープンアクセス | ||
| Item type | SIG Technical Reports(1) | |||||||
|---|---|---|---|---|---|---|---|---|
| 公開日 | 2010-07-05 | |||||||
| タイトル | ||||||||
| タイトル | Classification of Idiopathic Interstitial Pneumonia on High-resolution CT Images using Counter-propagation Network | |||||||
| タイトル | ||||||||
| 言語 | en | |||||||
| タイトル | Classification of Idiopathic Interstitial Pneumonia on High-resolution CT Images using Counter-propagation Network | |||||||
| 言語 | ||||||||
| 言語 | eng | |||||||
| 資源タイプ | ||||||||
| 資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
| 資源タイプ | technical report | |||||||
| 著者所属 | ||||||||
| Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University | ||||||||
| 著者所属 | ||||||||
| Graduate School of Informatics and Engineering, University of Electro-Communications | ||||||||
| 著者所属 | ||||||||
| Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University | ||||||||
| 著者所属(英) | ||||||||
| en | ||||||||
| Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University | ||||||||
| 著者所属(英) | ||||||||
| en | ||||||||
| Graduate School of Informatics and Engineering, University of Electro-Communications | ||||||||
| 著者所属(英) | ||||||||
| en | ||||||||
| Applied Medical Engineering Sciece, Graduate School of Medicine, Yamaguchi University | ||||||||
| 著者名 |
Yuki, Tanaka
Hayaru, Shouno
Shoji, Kido
× Yuki, Tanaka Hayaru, Shouno Shoji, Kido
|
|||||||
| 著者名(英) |
Yuki, Tanaka
Hayaru, Shouno
Shoji, Kido
× Yuki, Tanaka Hayaru, Shouno Shoji, Kido
|
|||||||
| 論文抄録 | ||||||||
| 内容記述タイプ | Other | |||||||
| 内容記述 | In order to classify the idiopathic interstitial pneumonias(IIPs), extraction and interpretation of features on high-resolution computed tomography (HRCT) image is considered to be effective. The purpose of our study is to develop a diagnosis support system to help diagnostician of classification for those HRCT images using an artificial neural network called counter propagation network. The CPN is a hybrid type neural network model composed from self-organizing map (SOM) for feature extraction and from multi-layered perceptron (MLP) for classification. Applying the CPN for the IIPs images, we could obtain both a kind of similarity map and classification system. | |||||||
| 論文抄録(英) | ||||||||
| 内容記述タイプ | Other | |||||||
| 内容記述 | In order to classify the idiopathic interstitial pneumonias(IIPs), extraction and interpretation of features on high-resolution computed tomography (HRCT) image is considered to be effective. The purpose of our study is to develop a diagnosis support system to help diagnostician of classification for those HRCT images using an artificial neural network called counter propagation network. The CPN is a hybrid type neural network model composed from self-organizing map (SOM) for feature extraction and from multi-layered perceptron (MLP) for classification. Applying the CPN for the IIPs images, we could obtain both a kind of similarity map and classification system. | |||||||
| 書誌レコードID | ||||||||
| 収録物識別子タイプ | NCID | |||||||
| 収録物識別子 | AN10505667 | |||||||
| 書誌情報 |
研究報告数理モデル化と問題解決(MPS) 巻 2010-MPS-79, 号 7, p. 1-6, 発行日 2010-07-05 |
|||||||
| Notice | ||||||||
| SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
| 出版者 | ||||||||
| 言語 | ja | |||||||
| 出版者 | 情報処理学会 | |||||||