ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2009
  4. 2009-BIO-019

Conditional Density Estimation Based on Density Ratio Estimation

https://ipsj.ixsq.nii.ac.jp/records/66990
https://ipsj.ixsq.nii.ac.jp/records/66990
62a43e28-bf0d-4c3a-9583-946c2d29da34
名前 / ファイル ライセンス アクション
IPSJ-BIO09019004.pdf IPSJ-BIO09019004.pdf (166.6 kB)
Copyright (c) 2009 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2009-12-10
タイトル
タイトル Conditional Density Estimation Based on Density Ratio Estimation
タイトル
言語 en
タイトル Conditional Density Estimation Based on Density Ratio Estimation
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tokyo Institute of Technology / Japan Science and Technology Agency
著者所属
Nagoya Institute of Technology
著者所属
The University of Tokyo
著者所属
Nagoya University
著者所属
Tokyo Institute of Technology
著者所属
The University of Tokyo
著者所属(英)
en
Tokyo Institute of Technology / Japan Science and Technology Agency
著者所属(英)
en
Nagoya Institute of Technology
著者所属(英)
en
The University of Tokyo
著者所属(英)
en
Nagoya University
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
The University of Tokyo
著者名 Masashi, Sugiyama Ichiro, Takeuchi Taiji, Suzuki Takafumi, Kanamori Hirotaka, Hachiya Daisuke, Okanohara

× Masashi, Sugiyama Ichiro, Takeuchi Taiji, Suzuki Takafumi, Kanamori Hirotaka, Hachiya Daisuke, Okanohara

Masashi, Sugiyama
Ichiro, Takeuchi
Taiji, Suzuki
Takafumi, Kanamori
Hirotaka, Hachiya
Daisuke, Okanohara

Search repository
著者名(英) Masashi, Sugiyama Ichiro, Takeuchi Taiji, Suzuki Takafumi, Kanamori Hirotaka, Hachiya Daisuke, Okanohara

× Masashi, Sugiyama Ichiro, Takeuchi Taiji, Suzuki Takafumi, Kanamori Hirotaka, Hachiya Daisuke, Okanohara

en Masashi, Sugiyama
Ichiro, Takeuchi
Taiji, Suzuki
Takafumi, Kanamori
Hirotaka, Hachiya
Daisuke, Okanohara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation.
論文抄録(英)
内容記述タイプ Other
内容記述 Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2009-BIO-19, 号 4, p. 1-8, 発行日 2009-12-10
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-22 00:45:30.803235
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3