ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. Asia Pacific Conference on Robot IoT System Development and Platform (APRIS)
  4. 2024

Comparison of Machine Learning Models for Non-invasive Fetal Electrocardiogram Monitoring using Abdominal Leads

https://ipsj.ixsq.nii.ac.jp/records/241880
https://ipsj.ixsq.nii.ac.jp/records/241880
31348fba-ce3e-42a4-a083-ac5ef8e40a4a
名前 / ファイル ライセンス アクション
IPSJ-APRIS2024020.pdf IPSJ-APRIS2024020.pdf (1.5 MB)
 2026年12月27日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, EMB:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-12-27
タイトル
タイトル Comparison of Machine Learning Models for Non-invasive Fetal Electrocardiogram Monitoring using Abdominal Leads
タイトル
言語 en
タイトル Comparison of Machine Learning Models for Non-invasive Fetal Electrocardiogram Monitoring using Abdominal Leads
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属
Department of Computer, Faculty of Science and Technology, Chiang Mai Rajabhat University
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者所属(英)
en
Department of Computer, Faculty of Science and Technology, Chiang Mai Rajabhat University
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
著者名 Palapon, Soontornpas

× Palapon, Soontornpas

Palapon, Soontornpas

Search repository
Piroon, Kaewfoongrungsri

× Piroon, Kaewfoongrungsri

Piroon, Kaewfoongrungsri

Search repository
Daranee, Hormdee

× Daranee, Hormdee

Daranee, Hormdee

Search repository
著者名(英) Palapon, Soontornpas

× Palapon, Soontornpas

en Palapon, Soontornpas

Search repository
Piroon, Kaewfoongrungsri

× Piroon, Kaewfoongrungsri

en Piroon, Kaewfoongrungsri

Search repository
Daranee, Hormdee

× Daranee, Hormdee

en Daranee, Hormdee

Search repository
論文抄録
内容記述タイプ Other
内容記述 Fetal electrocardiography (FECG) is a crucial tool for monitoring fetal health, traditionally relying on invasive methods to achieve accurate readings. This paper presents a non-invasive technique for FECG monitoring that utilizes machine learning algorithms to process signals obtained from leads attached to the maternal abdomen. The primary objective is to demonstrate that non-invasive methods can achieve accuracy comparable to that of invasive techniques. By employing signal processing and machine learning models, we extract and enhance FECG signals from maternal abdominal recordings, addressing challenges such as noise and signal overlap. Our results indicate that the proposed non-invasive approach, supported by machine learning, can closely approximate the accuracy of direct invasive FECG monitoring, offering a safer and more comfortable alternative for both mother and fetus. This study highlights the potential for non-invasive FECG monitoring to become a standard practice in prenatal care, reducing the risks associated with invasive procedures while maintaining high diagnostic reliability.
論文抄録(英)
内容記述タイプ Other
内容記述 Fetal electrocardiography (FECG) is a crucial tool for monitoring fetal health, traditionally relying on invasive methods to achieve accurate readings. This paper presents a non-invasive technique for FECG monitoring that utilizes machine learning algorithms to process signals obtained from leads attached to the maternal abdomen. The primary objective is to demonstrate that non-invasive methods can achieve accuracy comparable to that of invasive techniques. By employing signal processing and machine learning models, we extract and enhance FECG signals from maternal abdominal recordings, addressing challenges such as noise and signal overlap. Our results indicate that the proposed non-invasive approach, supported by machine learning, can closely approximate the accuracy of direct invasive FECG monitoring, offering a safer and more comfortable alternative for both mother and fetus. This study highlights the potential for non-invasive FECG monitoring to become a standard practice in prenatal care, reducing the risks associated with invasive procedures while maintaining high diagnostic reliability.
書誌情報 Proceedings of Asia Pacific Conference on Robot IoT System Development and Platform

巻 2024, p. 71-72, 発行日 2024-12-27
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:30:39.030274
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3