ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. Asia Pacific Conference on Robot IoT System Development and Platform (APRIS)
  4. 2024

Identifying Traffic Direction via YOLOv8 and Cross Product Method

https://ipsj.ixsq.nii.ac.jp/records/241873
https://ipsj.ixsq.nii.ac.jp/records/241873
dce6bfdf-da97-4a71-9127-3ba9c8209405
名前 / ファイル ライセンス アクション
IPSJ-APRIS2024013.pdf IPSJ-APRIS2024013.pdf (1.1 MB)
 2026年12月27日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, EMB:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-12-27
タイトル
タイトル Identifying Traffic Direction via YOLOv8 and Cross Product Method
タイトル
言語 en
タイトル Identifying Traffic Direction via YOLOv8 and Cross Product Method
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen, University
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen, University
著者所属
Department of Computer Engineering, Faculty of Engineering, Khon Kaen, University
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen, University
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen, University
著者所属(英)
en
Department of Computer Engineering, Faculty of Engineering, Khon Kaen, University
著者名 Metawin, Sumethiwit

× Metawin, Sumethiwit

Metawin, Sumethiwit

Search repository
Chinpakorn, Waiyavudhi

× Chinpakorn, Waiyavudhi

Chinpakorn, Waiyavudhi

Search repository
Daranee, Hormdee

× Daranee, Hormdee

Daranee, Hormdee

Search repository
著者名(英) Metawin, Sumethiwit

× Metawin, Sumethiwit

en Metawin, Sumethiwit

Search repository
Chinpakorn, Waiyavudhi

× Chinpakorn, Waiyavudhi

en Chinpakorn, Waiyavudhi

Search repository
Daranee, Hormdee

× Daranee, Hormdee

en Daranee, Hormdee

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper presents a novel approach to identifying traffic direction using a combination of the YOLOv8 object detection algorithm and a cross product-based method for vector analysis. YOLOv8, a state-of-the-art real-time object detection model, is employed to accurately detect and track vehicles in video streams. The detected vehicles are then analyzed using a Cross Product method, which calculates the relative movement vectors of the vehicles across consecutive frames. By determining the orientation of these vectors, the traffic direction―whether vehicles are moving left, right or forward―is inferred. This approach offers a robust solution for real-time traffic monitoring and analysis, leveraging the efficiency of YOLOv8 for object detection and the mathematical precision of the cross product for movement analysis. The proposed method is tested on various traffic scenarios, demonstrating its effectiveness in identifying traffic direction under diverse conditions.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper presents a novel approach to identifying traffic direction using a combination of the YOLOv8 object detection algorithm and a cross product-based method for vector analysis. YOLOv8, a state-of-the-art real-time object detection model, is employed to accurately detect and track vehicles in video streams. The detected vehicles are then analyzed using a Cross Product method, which calculates the relative movement vectors of the vehicles across consecutive frames. By determining the orientation of these vectors, the traffic direction―whether vehicles are moving left, right or forward―is inferred. This approach offers a robust solution for real-time traffic monitoring and analysis, leveraging the efficiency of YOLOv8 for object detection and the mathematical precision of the cross product for movement analysis. The proposed method is tested on various traffic scenarios, demonstrating its effectiveness in identifying traffic direction under diverse conditions.
書誌情報 Proceedings of Asia Pacific Conference on Robot IoT System Development and Platform

巻 2024, p. 57-58, 発行日 2024-12-27
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:30:50.261272
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3