ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. Asia Pacific Conference on Robot IoT System Development and Platform (APRIS)
  4. 2024

Automated Scenario Generation for Autonomous Robots using Large Language Models

https://ipsj.ixsq.nii.ac.jp/records/241867
https://ipsj.ixsq.nii.ac.jp/records/241867
7a5d7d59-6172-48b9-8ea1-9c2d351727fd
名前 / ファイル ライセンス アクション
IPSJ-APRIS2024007.pdf IPSJ-APRIS2024007.pdf (919.0 kB)
 2026年12月27日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, EMB:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-12-27
タイトル
タイトル Automated Scenario Generation for Autonomous Robots using Large Language Models
タイトル
言語 en
タイトル Automated Scenario Generation for Autonomous Robots using Large Language Models
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Shibaura Institute of Technology
著者所属
Shibaura Institute of Technology
著者所属(英)
en
Shibaura Institute of Technology
著者所属(英)
en
Shibaura Institute of Technology
著者名 Kyoji, Tanaka

× Kyoji, Tanaka

Kyoji, Tanaka

Search repository
Kenji, Hisazumi

× Kenji, Hisazumi

Kenji, Hisazumi

Search repository
著者名(英) Kyoji, Tanaka

× Kyoji, Tanaka

en Kyoji, Tanaka

Search repository
Kenji, Hisazumi

× Kenji, Hisazumi

en Kenji, Hisazumi

Search repository
論文抄録
内容記述タイプ Other
内容記述 In recent autonomous robot development, there is a growing need for early problem detection through cost-effective validation and countermeasures using simulation testing. However, there are still many challenges in the automatic generation of test scenarios and the diversity and complexity of the tests. This paper proposes a more accurate drone simulation that meets user requirements by conducting scenario-based testing using the Hakoniwa platform, which allows for IoT and robot software development in a virtual environment, and Large Language Models (LLM).
論文抄録(英)
内容記述タイプ Other
内容記述 In recent autonomous robot development, there is a growing need for early problem detection through cost-effective validation and countermeasures using simulation testing. However, there are still many challenges in the automatic generation of test scenarios and the diversity and complexity of the tests. This paper proposes a more accurate drone simulation that meets user requirements by conducting scenario-based testing using the Hakoniwa platform, which allows for IoT and robot software development in a virtual environment, and Large Language Models (LLM).
書誌情報 Proceedings of Asia Pacific Conference on Robot IoT System Development and Platform

巻 2024, p. 45-46, 発行日 2024-12-27
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:30:59.248809
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3