Item type |
SIG Technical Reports(1) |
公開日 |
2024-11-27 |
タイトル |
|
|
タイトル |
Enhancing Tumor Classification in Testicular Cancer: Segmentation-Based Pretraining and Multimodal Prediction |
タイトル |
|
|
言語 |
en |
|
タイトル |
Enhancing Tumor Classification in Testicular Cancer: Segmentation-Based Pretraining and Multimodal Prediction |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
University of Tsukuba |
著者所属 |
|
|
|
University of Tsukuba Hospital |
著者所属 |
|
|
|
Aichi Cancer Center Hospital |
著者所属 |
|
|
|
University of Tsukuba |
著者所属(英) |
|
|
|
en |
|
|
University of Tsukuba |
著者所属(英) |
|
|
|
en |
|
|
University of Tsukuba Hospital |
著者所属(英) |
|
|
|
en |
|
|
Aichi Cancer Center Hospital |
著者所属(英) |
|
|
|
en |
|
|
University of Tsukuba |
著者名 |
Shota, Nakagawa
Satoshi, Nitta
Takahiro, Kojima
Hideki, Kakeya
|
著者名(英) |
Shota, Nakagawa
Satoshi, Nitta
Takahiro, Kojima
Hideki, Kakeya
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Testicular cancer that metastasizes to retroperitoneal lymph nodes is typically treated with chemotherapy, followed by post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND). A significant concern is that approximately 50% of patients undergoing PC-RPLND have necrotic tissue in the resected specimens, indicating potential overtreatment. In this study, we propose a U-net-based classification model to distinguish between necrosis and residual teratoma prior to surgery, aiming to reduce unnecessary procedures. The U-net-based classifier achieves an area under the curve (AUC) of 0.856 and demonstrates superior performance compared to a ResNet50 classifier when results are shown in scatterplots with the results given by Logistic Regression using clinical variables. These plots highlight that the U-net-based model more accurately identifies benign tissues, supporting clinical decision-making and potentially minimizing unnecessary surgeries in testicular cancer patients. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Testicular cancer that metastasizes to retroperitoneal lymph nodes is typically treated with chemotherapy, followed by post-chemotherapy retroperitoneal lymph node dissection (PC-RPLND). A significant concern is that approximately 50% of patients undergoing PC-RPLND have necrotic tissue in the resected specimens, indicating potential overtreatment. In this study, we propose a U-net-based classification model to distinguish between necrosis and residual teratoma prior to surgery, aiming to reduce unnecessary procedures. The U-net-based classifier achieves an area under the curve (AUC) of 0.856 and demonstrates superior performance compared to a ResNet50 classifier when results are shown in scatterplots with the results given by Logistic Regression using clinical variables. These plots highlight that the U-net-based model more accurately identifies benign tissues, supporting clinical decision-making and potentially minimizing unnecessary surgeries in testicular cancer patients. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA12055912 |
書誌情報 |
研究報告バイオ情報学(BIO)
巻 2024-BIO-80,
号 15,
p. 1-6,
発行日 2024-11-27
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8590 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |