ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. コンピュータセキュリティシンポジウム
  4. 2024

Training Machine Learning Models for Behavior Estimation from Smartwatch with Local Differential Privacy

https://ipsj.ixsq.nii.ac.jp/records/240783
https://ipsj.ixsq.nii.ac.jp/records/240783
c66dfaf7-e11f-4215-9f9b-132a0f1ca94e
名前 / ファイル ライセンス アクション
IPSJ-CSS2024037.pdf IPSJ-CSS2024037.pdf (1.1 MB)
 2026年10月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CSEC:会員:¥0, SPT:会員:¥0, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-10-15
タイトル
言語 en
タイトル Training Machine Learning Models for Behavior Estimation from Smartwatch with Local Differential Privacy
タイトル
言語 en
タイトル Training Machine Learning Models for Behavior Estimation from Smartwatch with Local Differential Privacy
言語
言語 eng
キーワード
主題Scheme Other
主題 Local Differential Privacy, Machine Learning, Smartwatches
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Meiji University
著者所属
Meiji University
著者所属(英)
en
Meiji University
著者所属(英)
en
Meiji University
著者名 Andres, Hernandez-Matamoros

× Andres, Hernandez-Matamoros

Andres, Hernandez-Matamoros

Search repository
Hiroaki, Kikuchi

× Hiroaki, Kikuchi

Hiroaki, Kikuchi

Search repository
著者名(英) Andres, Hernandez-Matamoros

× Andres, Hernandez-Matamoros

en Andres, Hernandez-Matamoros

Search repository
Hiroaki, Kikuchi

× Hiroaki, Kikuchi

en Hiroaki, Kikuchi

Search repository
論文抄録
内容記述タイプ Other
内容記述 The increasing use of smartwatches for continuous health monitoring necessitates robust and privacy-preserving approaches. To protect user privacy, local differential privacy (LDP) approaches that estimate Joint Probability Distributions (JPD) from noisy datasets have been proposed: Lopub, Locop, BR, and Castell. This paper focuses on training a machine learning model to recognize activity (exercise). Training using JPD helps prevent adversaries from performing training data extraction attacks to recover individual training data, allowing the model to be safely shared with new users, who can run the model locally to predict their activity. We compare our results with the PrivBayes model (Central Differential Privacy) as a benchmark. Through comprehensive experiments on different smartwatch datasets, we demonstrate that the Castell approach significantly outperforms Lopub, Locop, and BR in terms of accuracy. This finding underscores Castell’s potential as a superior choice for privacy-preserving activity detection in wearable devices, balancing the trade-off between data privacy and model performance. Our results highlight the importance of selecting appropriate LDP mechanisms to enhance the reliability and privacy of machine learning models in real-world health monitoring applications.
論文抄録(英)
内容記述タイプ Other
内容記述 The increasing use of smartwatches for continuous health monitoring necessitates robust and privacy-preserving approaches. To protect user privacy, local differential privacy (LDP) approaches that estimate Joint Probability Distributions (JPD) from noisy datasets have been proposed: Lopub, Locop, BR, and Castell. This paper focuses on training a machine learning model to recognize activity (exercise). Training using JPD helps prevent adversaries from performing training data extraction attacks to recover individual training data, allowing the model to be safely shared with new users, who can run the model locally to predict their activity. We compare our results with the PrivBayes model (Central Differential Privacy) as a benchmark. Through comprehensive experiments on different smartwatch datasets, we demonstrate that the Castell approach significantly outperforms Lopub, Locop, and BR in terms of accuracy. This finding underscores Castell’s potential as a superior choice for privacy-preserving activity detection in wearable devices, balancing the trade-off between data privacy and model performance. Our results highlight the importance of selecting appropriate LDP mechanisms to enhance the reliability and privacy of machine learning models in real-world health monitoring applications.
書誌情報 コンピュータセキュリティシンポジウム2024論文集

p. 266-273, 発行日 2024-10-15
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:51:51.246899
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3