ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ヒューマンコンピュータインタラクション(HCI)
  3. 2024
  4. 2024-HCI-210

Preliminary Investigation of End-to-end Indoor Trajectory Prediction Based on 2D Floorplan Image and Graph Neural Network

https://ipsj.ixsq.nii.ac.jp/records/240563
https://ipsj.ixsq.nii.ac.jp/records/240563
9d777e6a-3d5e-4e6a-b352-9d40b35f420e
名前 / ファイル ライセンス アクション
IPSJ-HCI24210022.pdf IPSJ-HCI24210022.pdf (1.5 MB)
 2026年11月11日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, HCI:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-11-11
タイトル
タイトル Preliminary Investigation of End-to-end Indoor Trajectory Prediction Based on 2D Floorplan Image and Graph Neural Network
タイトル
言語 en
タイトル Preliminary Investigation of End-to-end Indoor Trajectory Prediction Based on 2D Floorplan Image and Graph Neural Network
言語
言語 eng
キーワード
主題Scheme Other
主題 ウェアラブル
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Yuqiao, Wang

× Yuqiao, Wang

Yuqiao, Wang

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
著者名(英) Yuqiao, Wang

× Yuqiao, Wang

en Yuqiao, Wang

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Predicting movement trajectories of individuals within indoor environments is essential for applications such as improving navigation systems and enhancing spatial awareness in smart buildings. Traditional trajectory prediction methods often perform map-matching by leveraging floormap information, resulting in complex and costly systems due to feature extraction from the floormap information and integrating the extracted floormap information into computationally expensive non-linear systems such as particle filters. This study addresses these challenges by introducing a user-friendly, end-to-end model that eliminates the need for complicated pre-processing or specialized data collection. Our approach simplifies the task by using only Inertial Measurement Units (IMU) data and a 2D floorplan image to construct a neural network-based trajectory prediction system. By leveraging Graph Neural Networks (GNNs) to integrate user's positional information into the floor map information and Long Short-Term Memory (LSTM) networks to capture the temporal dynamics of user movements, the model reconstructs the trajectory of the pedestrian based on IMU data. This method offers a practical and accessible solution for accurate trajectory prediction in complex indoor settings by integrating spatial and temporal data into a unified framework, demonstrating the effectiveness of GNNs in processing spatial structures for real-world applications.
論文抄録(英)
内容記述タイプ Other
内容記述 Predicting movement trajectories of individuals within indoor environments is essential for applications such as improving navigation systems and enhancing spatial awareness in smart buildings. Traditional trajectory prediction methods often perform map-matching by leveraging floormap information, resulting in complex and costly systems due to feature extraction from the floormap information and integrating the extracted floormap information into computationally expensive non-linear systems such as particle filters. This study addresses these challenges by introducing a user-friendly, end-to-end model that eliminates the need for complicated pre-processing or specialized data collection. Our approach simplifies the task by using only Inertial Measurement Units (IMU) data and a 2D floorplan image to construct a neural network-based trajectory prediction system. By leveraging Graph Neural Networks (GNNs) to integrate user's positional information into the floor map information and Long Short-Term Memory (LSTM) networks to capture the temporal dynamics of user movements, the model reconstructs the trajectory of the pedestrian based on IMU data. This method offers a practical and accessible solution for accurate trajectory prediction in complex indoor settings by integrating spatial and temporal data into a unified framework, demonstrating the effectiveness of GNNs in processing spatial structures for real-world applications.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA1221543X
書誌情報 研究報告ヒューマンコンピュータインタラクション(HCI)

巻 2024-HCI-210, 号 22, p. 1-8, 発行日 2024-11-11
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8760
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:56:21.974941
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3