ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2024

Lightweight Merging Point Prediction on Highway On-Ramps Using Regression Techniques

https://ipsj.ixsq.nii.ac.jp/records/240324
https://ipsj.ixsq.nii.ac.jp/records/240324
88f9640e-9c9e-4f7c-aea3-f2065182cff4
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2024200.pdf IPSJ-DICOMO2024200.pdf (3.2 MB)
 2026年6月19日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, DLIB:会員:¥0
Item type Symposium(1)
公開日 2024-06-19
タイトル
タイトル Lightweight Merging Point Prediction on Highway On-Ramps Using Regression Techniques
タイトル
言語 en
タイトル Lightweight Merging Point Prediction on Highway On-Ramps Using Regression Techniques
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
大阪大学大学院情報科学研究科
著者所属
大阪大学大学院情報科学研究科
著者所属
大阪大学大学院情報科学研究科
著者所属
大阪大学大学院情報科学研究科
著者所属
オートネットワーク研究所 (AutoNetworks Technologies, Ltd.)
著者所属
オートネットワーク研究所 (AutoNetworks Technologies, Ltd.)
著者所属
オートネットワーク研究所 (AutoNetworks Technologies, Ltd.)
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
AutoNetworks Technologies, Ltd
著者所属(英)
en
AutoNetworks Technologies, Ltd
著者所属(英)
en
AutoNetworks Technologies, Ltd
著者名 Doyoon, Lee

× Doyoon, Lee

Doyoon, Lee

Search repository
廣森, 聡仁

× 廣森, 聡仁

廣森, 聡仁

Search repository
高井, 峰生

× 高井, 峰生

高井, 峰生

Search repository
山口, 弘純

× 山口, 弘純

山口, 弘純

Search repository
西村, 友佑

× 西村, 友佑

西村, 友佑

Search repository
長村, 吉富

× 長村, 吉富

長村, 吉富

Search repository
竹嶋, 進

× 竹嶋, 進

竹嶋, 進

Search repository
著者名(英) Doyoon, Lee

× Doyoon, Lee

en Doyoon, Lee

Search repository
Akihito, Hiromori

× Akihito, Hiromori

en Akihito, Hiromori

Search repository
Mineo, Takai

× Mineo, Takai

en Mineo, Takai

Search repository
Hirozumi, Yamaguchi

× Hirozumi, Yamaguchi

en Hirozumi, Yamaguchi

Search repository
Yusuke, Nishimura

× Yusuke, Nishimura

en Yusuke, Nishimura

Search repository
Yoshihisa, Nagamura

× Yoshihisa, Nagamura

en Yoshihisa, Nagamura

Search repository
Susumu, Takeshima

× Susumu, Takeshima

en Susumu, Takeshima

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this paper, we introduce a lightweight machine learning framework for forecasting the merging points of vehicles on on-ramps. Our model, in contrast to prior deep learning methods, provides a practical solution that balances high precision with acceptable training and inference expenses. Our system uses the YOLO v5 object detector to identify vehicles from video footage captured by a stationary camera, tracks vehicles using our newly developed original tracker, generates vehicle merging data, and employs Random Forest Regression (RFR) and eXtreme Gradient Boosting (XGBoost) to test the merging points prediction. The models use multivariate multiple regression to forecast several decision-making points along the on-ramp lane, taking into account the positions and velocities of the merging vehicle and its four neighboring vehicles. These DPs mimic the decision-making process of human drivers. We assess our method using collected video data and compare the root mean squared error (RMSE) and inference speed with a traditional Bi-LSTM model. For unseen data, our model using the XGBoost model not only performs with a lower RMSE score but also shows a faster inference speed compared to Bi-LSTM in our dataset by 76.46% and 76.47%, respectively.
論文抄録(英)
内容記述タイプ Other
内容記述 In this paper, we introduce a lightweight machine learning framework for forecasting the merging points of vehicles on on-ramps. Our model, in contrast to prior deep learning methods, provides a practical solution that balances high precision with acceptable training and inference expenses. Our system uses the YOLO v5 object detector to identify vehicles from video footage captured by a stationary camera, tracks vehicles using our newly developed original tracker, generates vehicle merging data, and employs Random Forest Regression (RFR) and eXtreme Gradient Boosting (XGBoost) to test the merging points prediction. The models use multivariate multiple regression to forecast several decision-making points along the on-ramp lane, taking into account the positions and velocities of the merging vehicle and its four neighboring vehicles. These DPs mimic the decision-making process of human drivers. We assess our method using collected video data and compare the root mean squared error (RMSE) and inference speed with a traditional Bi-LSTM model. For unseen data, our model using the XGBoost model not only performs with a lower RMSE score but also shows a faster inference speed compared to Bi-LSTM in our dataset by 76.46% and 76.47%, respectively.
書誌情報 マルチメディア,分散,協調とモバイルシンポジウム2024論文集

巻 2024, p. 1500-1506, 発行日 2024-06-19
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 08:00:53.725655
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3