ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ユビキタスコンピューティングシステム(UBI)
  3. 2024
  4. 2024-UBI-083

Leveraging Large Language Models to Enhance Understanding of Accelerometer Data on Physical Fatigue Detection Question Answering

https://ipsj.ixsq.nii.ac.jp/records/239562
https://ipsj.ixsq.nii.ac.jp/records/239562
6b4f4873-6a4b-4ce1-bce6-e2a3bd19a852
名前 / ファイル ライセンス アクション
IPSJ-UBI24083019.pdf IPSJ-UBI24083019.pdf (2.3 MB)
 2026年9月19日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, UBI:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-09-19
タイトル
タイトル Leveraging Large Language Models to Enhance Understanding of Accelerometer Data on Physical Fatigue Detection Question Answering
タイトル
言語 en
タイトル Leveraging Large Language Models to Enhance Understanding of Accelerometer Data on Physical Fatigue Detection Question Answering
言語
言語 eng
キーワード
主題Scheme Other
主題 ケアにおける認識と分析
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Life Science And Systems Engineering, Kyushu Institute of Technology/Department of Informatics, Universitas 17 Agustus 1945 Surabaya
著者所属
Graduate School of Life Science And Systems Engineering, Kyushu Institute of Technology
著者所属(英)
en
Graduate School of Life Science And Systems Engineering, Kyushu Institute of Technology / Department of Informatics, Universitas 17 Agustus 1945 Surabaya
著者所属(英)
en
Graduate School of Life Science And Systems Engineering, Kyushu Institute of Technology
著者名 Elsen, Ronando

× Elsen, Ronando

Elsen, Ronando

Search repository
Sozo, Inoue

× Sozo, Inoue

Sozo, Inoue

Search repository
著者名(英) Elsen, Ronando

× Elsen, Ronando

en Elsen, Ronando

Search repository
Sozo, Inoue

× Sozo, Inoue

en Sozo, Inoue

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this paper, we enhance the ability of Large Language Models (LLMs) to interpret accelerometer data for detecting physical fatigue. While sensors are increasingly used to monitor physical conditions, analyzing their data remains challenging. We focus on improving LLMs' question-answering capabilities, specifically for data generated from physical activities. To address the complexities of sensor data, we introduce and compare two input formats―list-based and graph-based representations. Using models like gpt-3.5-turbo and gpt-4o-mini in both zero-shot and few-shot scenarios, we find that graph-based formats significantly boost LLM performance, achieving a top F1-score of 67.50%. This research highlights the importance of refining data formats and enhancing model capabilities to improve LLMs' effectiveness in health monitoring applications.
論文抄録(英)
内容記述タイプ Other
内容記述 In this paper, we enhance the ability of Large Language Models (LLMs) to interpret accelerometer data for detecting physical fatigue. While sensors are increasingly used to monitor physical conditions, analyzing their data remains challenging. We focus on improving LLMs' question-answering capabilities, specifically for data generated from physical activities. To address the complexities of sensor data, we introduce and compare two input formats―list-based and graph-based representations. Using models like gpt-3.5-turbo and gpt-4o-mini in both zero-shot and few-shot scenarios, we find that graph-based formats significantly boost LLM performance, achieving a top F1-score of 67.50%. This research highlights the importance of refining data formats and enhancing model capabilities to improve LLMs' effectiveness in health monitoring applications.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11838947
書誌情報 研究報告ユビキタスコンピューティングシステム(UBI)

巻 2024-UBI-83, 号 19, p. 1-8, 発行日 2024-09-19
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8698
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 08:14:19.019463
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3