Item type |
SIG Technical Reports(1) |
公開日 |
2024-08-01 |
タイトル |
|
|
タイトル |
CapsNetベースウェハマップ欠陥パターン分類法における分類精度向上の試み~生成画像の適用およびデコーダリサイズの検討~ |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
耐障害性・ロバストネス |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
東京都立大学大学院システムデザイン研究科 |
著者所属 |
|
|
|
日本大学生産工学部 |
著者所属 |
|
|
|
日本大学生産工学部 |
著者所属 |
|
|
|
東京都立大学大学院システムデザイン研究科 |
著者名 |
青山, 智哉
杉山, 萌
新井, 雅之
福本, 聡
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
近年,LSI 製造工程で発生するシステマチック欠陥の検出および分類において,機械学習によってウェハマップ画像を分類する手法が多く研究されている.我々は先行研究において CapsNet を用いたウェハマップ欠陥パターン分類法について提案し,単一および複合欠陥モデル上で CNN と比較して高い分類精度を持つことを示した.本研究では,分類精度のさらなる向上を目的として,2 種の手法に関する検討を行った.まず,画像生成による学習用データセットの拡張について検討した.全ての欠陥カテゴリに対して画像を生成した場合と,データ数が少ない一部のカテゴリに対してのみ生成した場合の比較を行った.次にデコーダリサイズに関する検討を行った.CapsNet から出力される再構成画像の画素数が入力画像より小さくなるように CapsNet 内のデコーダネットワークを変更し,欠陥パターン分類精度の評価を行った. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10096105 |
書誌情報 |
研究報告システム・アーキテクチャ(ARC)
巻 2024-ARC-258,
号 2,
p. 1-4,
発行日 2024-08-01
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8574 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |