WEKO3
-
RootNode
アイテム
模倣学習型ニューラルネットワークを活用した歩行流制御施策の最適化
https://ipsj.ixsq.nii.ac.jp/records/236338
https://ipsj.ixsq.nii.ac.jp/records/236338ae677bec-446e-4f6f-9e81-560727ad6bf9
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2024 by the Information Processing Society of Japan
|
Item type | National Convention(1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2024-03-01 | |||||||||||||||||
タイトル | ||||||||||||||||||
タイトル | 模倣学習型ニューラルネットワークを活用した歩行流制御施策の最適化 | |||||||||||||||||
言語 | ||||||||||||||||||
言語 | jpn | |||||||||||||||||
キーワード | ||||||||||||||||||
主題Scheme | Other | |||||||||||||||||
主題 | ネットワーク | |||||||||||||||||
資源タイプ | ||||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||||||
資源タイプ | conference paper | |||||||||||||||||
著者所属 | ||||||||||||||||||
阪大 | ||||||||||||||||||
著者所属 | ||||||||||||||||||
阪大 | ||||||||||||||||||
著者所属 | ||||||||||||||||||
阪大 | ||||||||||||||||||
著者所属 | ||||||||||||||||||
阪大 | ||||||||||||||||||
著者所属 | ||||||||||||||||||
阪大 | ||||||||||||||||||
著者所属 | ||||||||||||||||||
NTTドコモ | ||||||||||||||||||
著者名 |
田中, 福治
× 田中, 福治
× 天野, 辰哉
× 内山, 彰
× 廣森, 聡仁
× 山口, 弘純
× 中村, 佑輔
|
|||||||||||||||||
論文抄録 | ||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||
内容記述 | 本論文では,大群衆が集まるイベント後の混雑を緩和する施策の最適化手法を提案する.提案手法では,ニューラルネットワークによるマルチエージェントシミュレータの代理モデルを活用した,勾配ベースのブラックボックス最適化手法を導入する.シミュレータとその評価関数を微分可能な関数として複製し,その勾配情報に基づいて施策を最適化することで,最適な施策の特定に要する時間を短縮する.評価実験から,提案手法により導出された施策はグリッドサーチで得られたものよりも高い精度を達成することを確認した.また,シミュレータを用いた施策探索と同等の精度を達成しつつ,より高速に施策探索が可能であることを確認した. | |||||||||||||||||
書誌レコードID | ||||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||||
収録物識別子 | AN00349328 | |||||||||||||||||
書誌情報 |
第86回全国大会講演論文集 巻 2024, 号 1, p. 41-42, 発行日 2024-03-01 |
|||||||||||||||||
出版者 | ||||||||||||||||||
言語 | ja | |||||||||||||||||
出版者 | 情報処理学会 |