ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2024
  4. 2024-QS-012

The State Preparation of Multivariate Normal Distributions using Tree Tensor Network

https://ipsj.ixsq.nii.ac.jp/records/235048
https://ipsj.ixsq.nii.ac.jp/records/235048
6a5bbc68-8c60-4c0a-b65d-0fc9281d0591
名前 / ファイル ライセンス アクション
IPSJ-QS24012001.pdf IPSJ-QS24012001.pdf (1.1 MB)
 2026年6月20日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, QS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-20
タイトル
タイトル The State Preparation of Multivariate Normal Distributions using Tree Tensor Network
タイトル
言語 en
タイトル The State Preparation of Multivariate Normal Distributions using Tree Tensor Network
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering Science, Osaka University
著者所属
Department of Nuclear Engineering, Kyoto University
著者所属(英)
en
Graduate School of Engineering Science, Osaka University
著者所属(英)
en
Department of Nuclear Engineering, Kyoto University
著者名 Hidetaka, Manabe

× Hidetaka, Manabe

Hidetaka, Manabe

Search repository
Yuichi, Sano

× Yuichi, Sano

Yuichi, Sano

Search repository
著者名(英) Hidetaka, Manabe

× Hidetaka, Manabe

en Hidetaka, Manabe

Search repository
Yuichi, Sano

× Yuichi, Sano

en Yuichi, Sano

Search repository
論文抄録
内容記述タイプ Other
内容記述 The quantum state preparation of probability distributions is an important subroutine for many quantum algorithms. When embedding D-dimensional multivariate probability distributions by discretizing each dimension into 2n-point, we need a state preparation circuit comprising a total of nD qubits, which is often difficult to compile. In this study, we propose a method to generate state preparation circuits for D-dimensional multivariate normal distributions, utilizing tensor networks. We represent the probability distribution with a tree tensor network and perform the task of quantum circuit compilation through the optimization of tensor networks. Especially, by employing structural optimization, we can search for a network structure that efficiently represents the correlations between variables. The numerical results suggest that our method can dramatically reduce the circuit depth while maintaining fidelity compared to existing approaches.
論文抄録(英)
内容記述タイプ Other
内容記述 The quantum state preparation of probability distributions is an important subroutine for many quantum algorithms. When embedding D-dimensional multivariate probability distributions by discretizing each dimension into 2n-point, we need a state preparation circuit comprising a total of nD qubits, which is often difficult to compile. In this study, we propose a method to generate state preparation circuits for D-dimensional multivariate normal distributions, utilizing tensor networks. We represent the probability distribution with a tree tensor network and perform the task of quantum circuit compilation through the optimization of tensor networks. Especially, by employing structural optimization, we can search for a network structure that efficiently represents the correlations between variables. The numerical results suggest that our method can dramatically reduce the circuit depth while maintaining fidelity compared to existing approaches.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2024-QS-12, 号 1, p. 1-6, 発行日 2024-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:37:31.339038
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3