ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2024
  4. 2024-BIO-78

Identification of Dihydrouridine RNA modification sites through stacking strategy

https://ipsj.ixsq.nii.ac.jp/records/234863
https://ipsj.ixsq.nii.ac.jp/records/234863
c27cdfd4-9c0b-44ff-a5b8-5fb65c9541fb
名前 / ファイル ライセンス アクション
IPSJ-BIO24078036.pdf IPSJ-BIO24078036.pdf (532.6 kB)
Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
BIO:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-13
タイトル
タイトル Identification of Dihydrouridine RNA modification sites through stacking strategy
タイトル
言語 en
タイトル Identification of Dihydrouridine RNA modification sites through stacking strategy
言語
言語 eng
キーワード
主題Scheme Other
主題 バイオ情報学2
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
著者所属
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
著者所属(英)
en
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
著者所属(英)
en
Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
著者名 Md., Harun-Or-Roshid

× Md., Harun-Or-Roshid

Md., Harun-Or-Roshid

Search repository
Hiroyuki, Kurata

× Hiroyuki, Kurata

Hiroyuki, Kurata

Search repository
著者名(英) Md., Harun-Or-Roshid

× Md., Harun-Or-Roshid

en Md., Harun-Or-Roshid

Search repository
Hiroyuki, Kurata

× Hiroyuki, Kurata

en Hiroyuki, Kurata

Search repository
論文抄録
内容記述タイプ Other
内容記述 Dihydrouridine (DHU, D) is a prevalent post-transcriptional modification in tRNA, mRNA, and snoRNA, linked to disease and biological processes in eukaryotes. Identifying D sites is crucial but experimental methods are costly and slow. To address this, we developed a computational tool that enhances prediction performance by integrating 66 baseline models through ensemble learning, named Stack-DHUpred. These models combine six machine-learning classifiers with eleven feature encoding methods. The best-performing combinations were used to construct the final stacked model. In tests, Stack-DHUpred surpassed existing predictors on the independent dataset, proving the efficacy of our stacking approach in accelerating the discovery and understanding of D modifications in post-transcriptional regulation.
論文抄録(英)
内容記述タイプ Other
内容記述 Dihydrouridine (DHU, D) is a prevalent post-transcriptional modification in tRNA, mRNA, and snoRNA, linked to disease and biological processes in eukaryotes. Identifying D sites is crucial but experimental methods are costly and slow. To address this, we developed a computational tool that enhances prediction performance by integrating 66 baseline models through ensemble learning, named Stack-DHUpred. These models combine six machine-learning classifiers with eleven feature encoding methods. The best-performing combinations were used to construct the final stacked model. In tests, Stack-DHUpred surpassed existing predictors on the independent dataset, proving the efficacy of our stacking approach in accelerating the discovery and understanding of D modifications in post-transcriptional regulation.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2024-BIO-78, 号 36, p. 1-2, 発行日 2024-06-13
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8590
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:41:18.601855
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3