ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システム・アーキテクチャ(ARC)
  3. 2024
  4. 2024-ARC-257

A preliminary evaluation of CNNs’ performance of meteor detection using training data by generative AI towards FPGA implementation

https://ipsj.ixsq.nii.ac.jp/records/234555
https://ipsj.ixsq.nii.ac.jp/records/234555
10715703-787e-4d1d-8df9-ae05a016b8b3
名前 / ファイル ライセンス アクション
IPSJ-ARC24257011.pdf IPSJ-ARC24257011.pdf (2.0 MB)
Copyright (c) 2024 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
ARC:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-06-03
タイトル
タイトル A preliminary evaluation of CNNs’ performance of meteor detection using training data by generative AI towards FPGA implementation
タイトル
言語 en
タイトル A preliminary evaluation of CNNs’ performance of meteor detection using training data by generative AI towards FPGA implementation
言語
言語 eng
キーワード
主題Scheme Other
主題 AI・機械学習
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
University of Tsukuba
著者所属
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者名 Yuping, Zheng

× Yuping, Zheng

Yuping, Zheng

Search repository
Kenji, Kanazawa

× Kenji, Kanazawa

Kenji, Kanazawa

Search repository
著者名(英) Yuping, Zheng

× Yuping, Zheng

en Yuping, Zheng

Search repository
Kenji, Kanazawa

× Kenji, Kanazawa

en Kenji, Kanazawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Convolutional Neural Network (CNN) has been widely used for object detection in recent years and has achieved many amazing results. In the paper, we investigate the effectiveness of Convolutional Neural Networks (CNNs) for the task of meteor detection, specifically examining the impact of training these networks with datasets augmented by generative artificial intelligence (AI). Due to the limitations posed by the scarce availability of diverse training data, we use generative artificial intelligence techniques to generate synthetic meteor images as our training dataset. In the research, we aim to compare different CNNs’ effectiveness for meteor detection and enhance detection accuracy and to explore the feasibility of deploying these models on Field-Programmable Gate Arrays (FPGAs) for real-time applications.
論文抄録(英)
内容記述タイプ Other
内容記述 Convolutional Neural Network (CNN) has been widely used for object detection in recent years and has achieved many amazing results. In the paper, we investigate the effectiveness of Convolutional Neural Networks (CNNs) for the task of meteor detection, specifically examining the impact of training these networks with datasets augmented by generative artificial intelligence (AI). Due to the limitations posed by the scarce availability of diverse training data, we use generative artificial intelligence techniques to generate synthetic meteor images as our training dataset. In the research, we aim to compare different CNNs’ effectiveness for meteor detection and enhance detection accuracy and to explore the feasibility of deploying these models on Field-Programmable Gate Arrays (FPGAs) for real-time applications.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10096105
書誌情報 研究報告システム・アーキテクチャ(ARC)

巻 2024-ARC-257, 号 11, p. 1-4, 発行日 2024-06-03
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8574
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 09:46:17.078601
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3