Item type |
SIG Technical Reports(1) |
公開日 |
2024-05-08 |
タイトル |
|
|
タイトル |
ニューラルネットワークを用いたダイヤ乱れ時の列車乗車率予測モデルの考案 |
タイトル |
|
|
言語 |
en |
|
タイトル |
Consideration of Train Congestion Rate Prediction Model under Disruption using Neural Network |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
[MBL/ITS]機械学習 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
(公財)鉄道総合技術研究所 |
著者所属 |
|
|
|
(公財)鉄道総合技術研究所 |
著者所属 |
|
|
|
(公財)鉄道総合技術研究所 |
著者所属 |
|
|
|
(公財)鉄道総合技術研究所 |
著者所属(英) |
|
|
|
en |
|
|
Railway Technical Research Institute |
著者所属(英) |
|
|
|
en |
|
|
Railway Technical Research Institute |
著者所属(英) |
|
|
|
en |
|
|
Railway Technical Research Institute |
著者所属(英) |
|
|
|
en |
|
|
Railway Technical Research Institute |
著者名 |
中挾, 晃介
辰井, 大祐
國松, 武俊
田中, 峻一
|
著者名(英) |
Kosuke, Nakabasami
Daisuke, Tatsui
Taketoshi, Kunimatsu
Shunichi, Tanaka
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
近年,鉄道事業者はアプリ等を通じて旅客に列車の混雑予測情報を提供しているが,ダイヤ乱れ時は混雑傾向が平常時と異なるため,現状ではダイヤ乱れ時の利用列車変更の判断のための十分な情報提供ができていない.本研究では,ダイヤ乱れ時を対象に,各列車の各駅発時点の乗車率を精度良く予測することを目的に,ニューラルネットワークを用いた乗車率予測モデルを考案した.モデルの入出力データが異なる 4 パターンのモデルを検討し,比較評価を行った結果,出力データを予測対象列車の予測時点の駅の乗車率とそれより先の予測対象駅の乗車率の差分値としたモデルが,予測対象駅の乗車率そのものとするモデルよりも精度良く予測できることを確認した. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA11851388 |
書誌情報 |
研究報告モバイルコンピューティングと新社会システム(MBL)
巻 2024-MBL-111,
号 2,
p. 1-7,
発行日 2024-05-08
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8817 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |