ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2024
  4. 2024-QS-011

電子状態計算のためのハイブリッドテンソルネットワークを用いた量子計算量子モンテカルロ

https://ipsj.ixsq.nii.ac.jp/records/233700
https://ipsj.ixsq.nii.ac.jp/records/233700
30a4ab8e-b6ad-4cff-80d3-6de6ca6495e5
名前 / ファイル ライセンス アクション
IPSJ-QS24011026.pdf IPSJ-QS24011026.pdf (1.8 MB)
 2026年3月21日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, QS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-03-21
タイトル
タイトル 電子状態計算のためのハイブリッドテンソルネットワークを用いた量子計算量子モンテカルロ
タイトル
言語 en
タイトル Quantum computing quantum Monte Carlo with hybrid tensor network for electronic structure calculations
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
三菱ケミカルScience & Innovation Center/慶應義塾大学量子コンピューティングセンター
著者所属(英)
en
Science & Innovation Center, Mitsubishi Chemical Corporation / Quantum Computing Center, Keio University
著者名 菅野, 志優

× 菅野, 志優

菅野, 志優

Search repository
論文抄録
内容記述タイプ Other
内容記述 Quantum computing quantum Monte Carlo (QC-QMC) is a QMC with a trial state prepared in quantum circuit. We propose an algorithm combining QC-QMC with a hybrid tensor network to extend the applicability of QC-QMC beyond a single quantum device size. In a two-layer quantum-quantum tree tensor, our algorithm for the larger trial wave function can be executed than preparable wave function in a device. Our algorithm is evaluated on the Heisenberg chain model, graphite-based Hubbard model, hydrogen plane model, and MonoArylBiImidazole using full configuration interaction QMC. In certain conditions, our algorithm can achieve energy accuracy (specifically, variance) several orders of magnitude higher than QMC, and the hybrid tensor version of QMC gives the same energy accuracy as QC-QMC when the system is appropriately decomposed. Moreover, we develop a pseudo-Hadamard test technique that enables efficient overlap calculations between a trial wave function and an orthonormal basis state. In a real device experiment by using the technique, we obtained almost the same accuracy as the statevector simulator, indicating the noise robustness of our algorithm. This work is based on the collaborative research [1].
論文抄録(英)
内容記述タイプ Other
内容記述 Quantum computing quantum Monte Carlo (QC-QMC) is a QMC with a trial state prepared in quantum circuit. We propose an algorithm combining QC-QMC with a hybrid tensor network to extend the applicability of QC-QMC beyond a single quantum device size. In a two-layer quantum-quantum tree tensor, our algorithm for the larger trial wave function can be executed than preparable wave function in a device. Our algorithm is evaluated on the Heisenberg chain model, graphite-based Hubbard model, hydrogen plane model, and MonoArylBiImidazole using full configuration interaction QMC. In certain conditions, our algorithm can achieve energy accuracy (specifically, variance) several orders of magnitude higher than QMC, and the hybrid tensor version of QMC gives the same energy accuracy as QC-QMC when the system is appropriately decomposed. Moreover, we develop a pseudo-Hadamard test technique that enables efficient overlap calculations between a trial wave function and an orthonormal basis state. In a real device experiment by using the technique, we obtained almost the same accuracy as the statevector simulator, indicating the noise robustness of our algorithm. This work is based on the collaborative research [1].
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2024-QS-11, 号 26, p. 1-10, 発行日 2024-03-21
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:01:05.656876
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3