ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2024
  4. 2024-QS-011

Quantum algorithm for the Vlasov simulation of the large-scale structure formation with massive neutrinos

https://ipsj.ixsq.nii.ac.jp/records/233675
https://ipsj.ixsq.nii.ac.jp/records/233675
cf7e2472-3670-4a06-a463-c501a806bf74
名前 / ファイル ライセンス アクション
IPSJ-QS24011001.pdf IPSJ-QS24011001.pdf (1.3 MB)
 2026年3月21日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, QS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-03-21
タイトル
タイトル Quantum algorithm for the Vlasov simulation of the large-scale structure formation with massive neutrinos
タイトル
言語 en
タイトル Quantum algorithm for the Vlasov simulation of the large-scale structure formation with massive neutrinos
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Center for Quantum Information and Quantum Biology, Osaka University
著者所属
Department of Physics, Graduate School of Science, The University of Tokyo
著者所属
Department of Physics, Graduate School of Science, The University of Tokyo/Research Center for the Early Universe, Graduate School of Science, The University of Tokyo
著者所属
Department of Liberal Arts, Tokyo University of Technology/Research Center for the Early Universe, Graduate School of Science, The University of Tokyo
著者所属
Department of Physics, Graduate School of Science, The University of Tokyo/Kavli IPMU (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo
著者所属(英)
en
Center for Quantum Information and Quantum Biology, Osaka University
著者所属(英)
en
Department of Physics, Graduate School of Science, The University of Tokyo
著者所属(英)
en
Department of Physics, Graduate School of Science, The University of Tokyo / Research Center for the Early Universe, Graduate School of Science, The University of Tokyo
著者所属(英)
en
Department of Liberal Arts, Tokyo University of Technology / Research Center for the Early Universe, Graduate School of Science, The University of Tokyo
著者所属(英)
en
Department of Physics, Graduate School of Science, The University of Tokyo / Kavli IPMU (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo
著者名 Koichi, Miyamoto

× Koichi, Miyamoto

Koichi, Miyamoto

Search repository
Soichiro, Yamazaki

× Soichiro, Yamazaki

Soichiro, Yamazaki

Search repository
Fumio, Uchida

× Fumio, Uchida

Fumio, Uchida

Search repository
Kotaro, Fujisawa

× Kotaro, Fujisawa

Kotaro, Fujisawa

Search repository
Naoki, Yoshida

× Naoki, Yoshida

Naoki, Yoshida

Search repository
著者名(英) Koichi, Miyamoto

× Koichi, Miyamoto

en Koichi, Miyamoto

Search repository
Soichiro, Yamazaki

× Soichiro, Yamazaki

en Soichiro, Yamazaki

Search repository
Fumio, Uchida

× Fumio, Uchida

en Fumio, Uchida

Search repository
Kotaro, Fujisawa

× Kotaro, Fujisawa

en Kotaro, Fujisawa

Search repository
Naoki, Yoshida

× Naoki, Yoshida

en Naoki, Yoshida

Search repository
論文抄録
内容記述タイプ Other
内容記述 Investigating the cosmological implication of the fact that neutrino has finite mass is of importance for fundamental physics. In particular, massive neutrino affects the formation of the large-scale structure (LSS) of the universe, and conversely, observations of the LSS can give constraints on the neutrino mass. Numerical simulations of the LSS formation including massive neutrino along with conventional cold dark matter is thus an important task. For this, calculating the neutrino distribution in the phase space by solving the Vlasov equation is a suitable approach, but it requires solving the PDE in the (6+1)-dimensional space and is thus computationally demanding: configuring ngr grid points in each coordinate and nt time grid points leads to O(n6gr) memory space and O(ntn6gr) queries to the coefficients in the discretized PDE. We propose a quantum algorithm for this task. Linearizing the Vlasov equation by neglecting the relatively weak self-gravity of the neutrino, we perform the Hamiltonian simulation to produce quantum states that encode the phase space distribution of neutrino. We also propose a way to extract the power spectrum of the neutrino density perturbations as classical data from the quantum state by quantum amplitude estimation with accuracy ε and query complexity of order O((ngr +nt)/ε). Our method also reduces the space complexity to O(polylog(ngr/ε)) in terms of the qubit number, while using quantum random access memories with O(n3gr) entries. As far as we know, this is the first quantum algorithm for the LSS simulation that outputs the quantity of practical interest with guaranteed accuracy. (This is a short version of the full paper [1].)
論文抄録(英)
内容記述タイプ Other
内容記述 Investigating the cosmological implication of the fact that neutrino has finite mass is of importance for fundamental physics. In particular, massive neutrino affects the formation of the large-scale structure (LSS) of the universe, and conversely, observations of the LSS can give constraints on the neutrino mass. Numerical simulations of the LSS formation including massive neutrino along with conventional cold dark matter is thus an important task. For this, calculating the neutrino distribution in the phase space by solving the Vlasov equation is a suitable approach, but it requires solving the PDE in the (6+1)-dimensional space and is thus computationally demanding: configuring ngr grid points in each coordinate and nt time grid points leads to O(n6gr) memory space and O(ntn6gr) queries to the coefficients in the discretized PDE. We propose a quantum algorithm for this task. Linearizing the Vlasov equation by neglecting the relatively weak self-gravity of the neutrino, we perform the Hamiltonian simulation to produce quantum states that encode the phase space distribution of neutrino. We also propose a way to extract the power spectrum of the neutrino density perturbations as classical data from the quantum state by quantum amplitude estimation with accuracy ε and query complexity of order O((ngr +nt)/ε). Our method also reduces the space complexity to O(polylog(ngr/ε)) in terms of the qubit number, while using quantum random access memories with O(n3gr) entries. As far as we know, this is the first quantum algorithm for the LSS simulation that outputs the quantity of practical interest with guaranteed accuracy. (This is a short version of the full paper [1].)
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 研究報告量子ソフトウェア(QS)

巻 2024-QS-11, 号 1, p. 1-10, 発行日 2024-03-21
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:01:36.442674
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3