ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 教育学習支援情報システム(CLE)
  3. 2024
  4. 2024-CLE-42

Students' Performance Prediction based on Similarity between Online Textbooks and Questions

https://ipsj.ixsq.nii.ac.jp/records/233566
https://ipsj.ixsq.nii.ac.jp/records/233566
5c528841-3b9f-4fe6-96f4-b22a3033d7ed
名前 / ファイル ライセンス アクション
IPSJ-CLE24042019.pdf IPSJ-CLE24042019.pdf (1.2 MB)
 2026年3月16日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CLE:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2024-03-16
タイトル
タイトル Students' Performance Prediction based on Similarity between Online Textbooks and Questions
タイトル
言語 en
タイトル Students' Performance Prediction based on Similarity between Online Textbooks and Questions
言語
言語 eng
キーワード
主題Scheme Other
主題 一般セッション5B
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Electrical Engineering, Kyushu University
著者所属
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属
Promotion Office for Data-Driven Innovation, Kyushu University
著者所属
Research Institute for Information Technology, Kyushu University
著者所属
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Graduate School of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Promotion Office for Data-Driven Innovation, Kyushu University
著者所属(英)
en
Research Institute for Information Technology, Kyushu University
著者所属(英)
en
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Faculty of Information Science and Electrical Engineering, Kyushu University
著者名 Yongle, Ren

× Yongle, Ren

Yongle, Ren

Search repository
Cheng, Tang

× Cheng, Tang

Cheng, Tang

Search repository
Yuta, Taniguchi

× Yuta, Taniguchi

Yuta, Taniguchi

Search repository
Tsubasa, Minematsu

× Tsubasa, Minematsu

Tsubasa, Minematsu

Search repository
Fumiya, Okubo

× Fumiya, Okubo

Fumiya, Okubo

Search repository
Atsushi, Shimada

× Atsushi, Shimada

Atsushi, Shimada

Search repository
著者名(英) Yongle, Ren

× Yongle, Ren

en Yongle, Ren

Search repository
Cheng, Tang

× Cheng, Tang

en Cheng, Tang

Search repository
Yuta, Taniguchi

× Yuta, Taniguchi

en Yuta, Taniguchi

Search repository
Tsubasa, Minematsu

× Tsubasa, Minematsu

en Tsubasa, Minematsu

Search repository
Fumiya, Okubo

× Fumiya, Okubo

en Fumiya, Okubo

Search repository
Atsushi, Shimada

× Atsushi, Shimada

en Atsushi, Shimada

Search repository
論文抄録
内容記述タイプ Other
内容記述 In university education, predicting students' performance is important for assessing their mastery of specific knowledge areas and offering feedback. To overcome limitations in existing grade predictions that overlook students' knowledge mastery, we propose an approach to predict performance on individual exam questions. This method utilizes cosine similarity calculations to establish relationships between exam questions and their connections to online textbooks, creating a new dataset from 494 students across four undergraduate courses. We evaluated the performance of four machine-learning methods, achieving an AUC score exceeding 0.7 through 5-fold cross-validation. We applied feature weighting by multiplying cosine similarity scores to enhance correlation with the prediction target. The results show an improvement of more than 0.1 in the AUC score over the other cases. The contribution of this work is the introduction of an effective method for predicting students' exam performance.
論文抄録(英)
内容記述タイプ Other
内容記述 In university education, predicting students' performance is important for assessing their mastery of specific knowledge areas and offering feedback. To overcome limitations in existing grade predictions that overlook students' knowledge mastery, we propose an approach to predict performance on individual exam questions. This method utilizes cosine similarity calculations to establish relationships between exam questions and their connections to online textbooks, creating a new dataset from 494 students across four undergraduate courses. We evaluated the performance of four machine-learning methods, achieving an AUC score exceeding 0.7 through 5-fold cross-validation. We applied feature weighting by multiplying cosine similarity scores to enhance correlation with the prediction target. The results show an improvement of more than 0.1 in the AUC score over the other cases. The contribution of this work is the introduction of an effective method for predicting students' exam performance.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12496725
書誌情報 研究報告教育学習支援情報システム(CLE)

巻 2024-CLE-42, 号 19, p. 1-8, 発行日 2024-03-16
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8620
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:03:17.089486
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3