WEKO3
アイテム
マルチスケールな空間特徴とConvolutional LSTMを用いた変動に頑健なWiFiベース人流予測
https://ipsj.ixsq.nii.ac.jp/records/232593
https://ipsj.ixsq.nii.ac.jp/records/232593ef8f14d2-e581-4663-bebd-124309b000ae
| 名前 / ファイル | ライセンス | アクション |
|---|---|---|
|
2026年2月22日からダウンロード可能です。
|
Copyright (c) 2024 by the Information Processing Society of Japan
|
|
| 非会員:¥660, IPSJ:学会員:¥330, MBL:会員:¥0, DLIB:会員:¥0 | ||
| Item type | SIG Technical Reports(1) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 公開日 | 2024-02-22 | |||||||||
| タイトル | ||||||||||
| タイトル | マルチスケールな空間特徴とConvolutional LSTMを用いた変動に頑健なWiFiベース人流予測 | |||||||||
| タイトル | ||||||||||
| 言語 | en | |||||||||
| タイトル | Fluctuation-Robust WiFi-based Crowd Flow Prediction Using Multiscale Spatial Features and Convolutional LSTM | |||||||||
| 言語 | ||||||||||
| 言語 | jpn | |||||||||
| キーワード | ||||||||||
| 主題Scheme | Other | |||||||||
| 主題 | City on the BigData | |||||||||
| 資源タイプ | ||||||||||
| 資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||||
| 資源タイプ | technical report | |||||||||
| 著者所属 | ||||||||||
| 豊橋技術科学大学博士前期課程情報・知能工学専攻 | ||||||||||
| 著者所属 | ||||||||||
| 豊橋技術科学大学情報・知能工学系 | ||||||||||
| 著者所属(英) | ||||||||||
| en | ||||||||||
| Toyohashi University of Technology Graduate Programs of Computer Science and Engineering for Master's Degree | ||||||||||
| 著者所属(英) | ||||||||||
| en | ||||||||||
| Toyohashi University of Technology Department of Computer Science and Engineering | ||||||||||
| 著者名 |
薄井, 雅貴
× 薄井, 雅貴
× 大村, 廉
|
|||||||||
| 著者名(英) |
Masataka, Usui
× Masataka, Usui
× Ren, Ohmura
|
|||||||||
| 論文抄録 | ||||||||||
| 内容記述タイプ | Other | |||||||||
| 内容記述 | 現在,AI,IoT 技術を活用して生活空間を支援するスマートシティに関する取り組みが活発である.この一環として WiFi パケットセンサを用いた人流予測が行われている.WiFi パケットセンサは Probe Request と呼ばれる信号を取得している.Probe Request と人数の間には相関関係が存在するため,Probe Request を予測することで人流を予測することが出来る.人流予測では,個人・対象地域ごとの個別かつ定常時の予測が多い.そのため,地域関係を考慮してイベントなどの突発的な変動に対処した人流予測が少ない課題が存在する.それに対して Convolutional LSTM (ConvLSTM)やマルチスケール特徴畳み込みブロックを用いることで,地域関係や突発的な変動を考慮した予測手法として気象予測がある.そこで本研究では,気象予測手法を取り入れ,地域関係と突発的な変動であるイベントを考慮した ConvLSTM ベースの人流予測モデルを提案し,Probe Request の予測精度を既存モデルと比較する.Kernel Size を変化させたマルチスケール特徴畳み込みブロックを従来手法である 3 層の ConvLSTMモ デルに組み込むことで,イベント時であっても決定係数が 0.86 以上と,イベント時の人流予測の精度を向上することを確認できた. | |||||||||
| 書誌レコードID | ||||||||||
| 収録物識別子タイプ | NCID | |||||||||
| 収録物識別子 | AA11851388 | |||||||||
| 書誌情報 |
研究報告モバイルコンピューティングと新社会システム(MBL) 巻 2024-MBL-110, 号 33, p. 1-8, 発行日 2024-02-22 |
|||||||||
| ISSN | ||||||||||
| 収録物識別子タイプ | ISSN | |||||||||
| 収録物識別子 | 2188-8817 | |||||||||
| Notice | ||||||||||
| SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||||
| 出版者 | ||||||||||
| 言語 | ja | |||||||||
| 出版者 | 情報処理学会 | |||||||||