ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.65
  3. No.2

Fast Preprocessing by Suffix Arrays for Managing Byte n-grams to Detect Malware Subspecies by Machine Learning

https://ipsj.ixsq.nii.ac.jp/records/232440
https://ipsj.ixsq.nii.ac.jp/records/232440
faf63352-6628-4b95-81b4-4ac4be5afef0
名前 / ファイル ライセンス アクション
IPSJ-JNL6502054.pdf IPSJ-JNL6502054.pdf (753.7 kB)
 2026年2月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2024-02-15
タイトル
タイトル Fast Preprocessing by Suffix Arrays for Managing Byte n-grams to Detect Malware Subspecies by Machine Learning
タイトル
言語 en
タイトル Fast Preprocessing by Suffix Arrays for Managing Byte n-grams to Detect Malware Subspecies by Machine Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] suffix array, byte n-grams, preprocessing
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Tokyo University of Technology
著者所属
Tokyo University of Technology
著者所属(英)
en
Tokyo University of Technology
著者所属(英)
en
Tokyo University of Technology
著者名 Kouhei, Kita

× Kouhei, Kita

Kouhei, Kita

Search repository
Ryuya, Uda

× Ryuya, Uda

Ryuya, Uda

Search repository
著者名(英) Kouhei, Kita

× Kouhei, Kita

en Kouhei, Kita

Search repository
Ryuya, Uda

× Ryuya, Uda

en Ryuya, Uda

Search repository
論文抄録
内容記述タイプ Other
内容記述 Although machine learning methods with byte n-grams have been marking high score for classifying malware and benignware, they seem not to be used for current anti-virus software. A performance bottleneck of the methods is dealing with byte n-grams in preprocessing such as top-k selection. It takes a long time to extract all byte n-grams which are required for selecting top-k n-grams. Moreover, if several “n”s are wanted to be used such as 4-grams, 8-grams and 16-grams, n-grams with each “n” must be extracted again and again. Therefore, we proposed a fast preprocessing method of extracting n-grams by applying a suffix array algorithm. Furthermore, our method can manage multi-length byte n-grams at the same time. In addition, selecting feature n-grams like top-k n-grams with information gain is also included in our method. On the other hand, our method has a limitation that it is only applicable to a large number of samples in the same malware subspecies family, which become extinct. We evaluated the speed of our method by comparing with usual ways. We also evaluated our method by machine learning with actual samples in four old malware subspecies families. We think there is a hope that our method may be applicable to detecting current targeted malware.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.232
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Although machine learning methods with byte n-grams have been marking high score for classifying malware and benignware, they seem not to be used for current anti-virus software. A performance bottleneck of the methods is dealing with byte n-grams in preprocessing such as top-k selection. It takes a long time to extract all byte n-grams which are required for selecting top-k n-grams. Moreover, if several “n”s are wanted to be used such as 4-grams, 8-grams and 16-grams, n-grams with each “n” must be extracted again and again. Therefore, we proposed a fast preprocessing method of extracting n-grams by applying a suffix array algorithm. Furthermore, our method can manage multi-length byte n-grams at the same time. In addition, selecting feature n-grams like top-k n-grams with information gain is also included in our method. On the other hand, our method has a limitation that it is only applicable to a large number of samples in the same malware subspecies family, which become extinct. We evaluated the speed of our method by comparing with usual ways. We also evaluated our method by machine learning with actual samples in four old malware subspecies families. We think there is a hope that our method may be applicable to detecting current targeted malware.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.232
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 65, 号 2, 発行日 2024-02-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:26:46.271621
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3