ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.65
  3. No.2

Selecting Iconic Gesture Forms Based on Typical Entity Images

https://ipsj.ixsq.nii.ac.jp/records/232418
https://ipsj.ixsq.nii.ac.jp/records/232418
758bf0a2-b667-4b55-b04f-b8a598fcd6e4
名前 / ファイル ライセンス アクション
IPSJ-JNL6502032.pdf IPSJ-JNL6502032.pdf (4.6 MB)
 2026年2月15日からダウンロード可能です。
Copyright (c) 2024 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2024-02-15
タイトル
タイトル Selecting Iconic Gesture Forms Based on Typical Entity Images
タイトル
言語 en
タイトル Selecting Iconic Gesture Forms Based on Typical Entity Images
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:インタラクションの理解および基盤・応用技術] gesture generation, gesture form, iconic gesture, image representation, deep neural network
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Faculty of Science and Technology, Seikei University
著者所属
Human Informatics Laboratories, NTT Corporation
著者所属
Human Informatics Laboratories, NTT Corporation
著者所属
Human Informatics Laboratories, NTT Corporation
著者所属(英)
en
Faculty of Science and Technology, Seikei University
著者所属(英)
en
Human Informatics Laboratories, NTT Corporation
著者所属(英)
en
Human Informatics Laboratories, NTT Corporation
著者所属(英)
en
Human Informatics Laboratories, NTT Corporation
著者名 Yukiko, I. Nakano

× Yukiko, I. Nakano

Yukiko, I. Nakano

Search repository
Fumio, Nihei

× Fumio, Nihei

Fumio, Nihei

Search repository
Ryo, Ishii

× Ryo, Ishii

Ryo, Ishii

Search repository
Ryuichiro, Higashinaka

× Ryuichiro, Higashinaka

Ryuichiro, Higashinaka

Search repository
著者名(英) Yukiko, I. Nakano

× Yukiko, I. Nakano

en Yukiko, I. Nakano

Search repository
Fumio, Nihei

× Fumio, Nihei

en Fumio, Nihei

Search repository
Ryo, Ishii

× Ryo, Ishii

en Ryo, Ishii

Search repository
Ryuichiro, Higashinaka

× Ryuichiro, Higashinaka

en Ryuichiro, Higashinaka

Search repository
論文抄録
内容記述タイプ Other
内容記述 Hand gestures are communication signals that emphasize an important part of an utterance and express the concept of emphasized words. Iconic gestures are hand gestures that depict concrete actions, objects, or events mentioned in speech. In this study, assuming that gesture forms of iconic gestures are determined based on the image of a given object in the speaker's mind, we propose a method for selecting iconic gesture forms based on the image representation obtained from a set of pictures of an object. First, we asked annotators to select a gesture form that best expresses the meaning of a given word based on a typical image and concept in their minds. We also collected a set of pictures of each entity from the web and created an average image representation from them. We then created a Deep Neural Network (DNN) model that takes a set of pictures of objects as input and predicts the typical gesture form that originates from the human mind. In the model evaluation experiment, our two-step gesture form selection method successfully classified seven types of gesture forms with an accuracy of over 62%. Furthermore, we created character animations that performed selected gestures and conducted a preliminary perception study to examine how human users perceive animated iconic gestures.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.196
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Hand gestures are communication signals that emphasize an important part of an utterance and express the concept of emphasized words. Iconic gestures are hand gestures that depict concrete actions, objects, or events mentioned in speech. In this study, assuming that gesture forms of iconic gestures are determined based on the image of a given object in the speaker's mind, we propose a method for selecting iconic gesture forms based on the image representation obtained from a set of pictures of an object. First, we asked annotators to select a gesture form that best expresses the meaning of a given word based on a typical image and concept in their minds. We also collected a set of pictures of each entity from the web and created an average image representation from them. We then created a Deep Neural Network (DNN) model that takes a set of pictures of objects as input and predicts the typical gesture form that originates from the human mind. In the model evaluation experiment, our two-step gesture form selection method successfully classified seven types of gesture forms with an accuracy of over 62%. Furthermore, we created character animations that performed selected gestures and conducted a preliminary perception study to examine how human users perceive animated iconic gestures.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.32(2024) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.32.196
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 65, 号 2, 発行日 2024-02-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:26:51.356681
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3