ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音声言語情報処理(SLP)
  3. 2023
  4. 2023-SLP-149

Investigation of Adapter for Automatic Speech Recognition in Noisy Environment

https://ipsj.ixsq.nii.ac.jp/records/231311
https://ipsj.ixsq.nii.ac.jp/records/231311
025333c0-fb12-4aa1-9154-cce79aa9f901
名前 / ファイル ライセンス アクション
IPSJ-SLP23149019.pdf IPSJ-SLP23149019.pdf (206.7 kB)
 2025年11月25日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, SLP:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-25
タイトル
タイトル Investigation of Adapter for Automatic Speech Recognition in Noisy Environment
タイトル
言語 en
タイトル Investigation of Adapter for Automatic Speech Recognition in Noisy Environment
言語
言語 eng
キーワード
主題Scheme Other
主題 分野横断(2)
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Informatics, Kyoto University
著者所属
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者名 Hao, Shi

× Hao, Shi

Hao, Shi

Search repository
Tatsuya, Kawahara

× Tatsuya, Kawahara

Tatsuya, Kawahara

Search repository
著者名(英) Hao, Shi

× Hao, Shi

en Hao, Shi

Search repository
Tatsuya, Kawahara

× Tatsuya, Kawahara

en Tatsuya, Kawahara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Adapting an automatic speech recognition (ASR) system to unseen noise environments is crucial. Integrating adapters into neural networks has emerged as a potent technique for transfer learning. This study thoroughly investigates adapter-based ASR adaptation in noisy environments. We conducted experiments using the CHiME-4 dataset. The results show that inserting the adapter in the shallow layer yields superior effectiveness, and there is no significant difference between adapting solely within the shallow layer and adapting across all layers. The simulated data helps the system to improve its performance under real noise conditions. Nonetheless, when the amount of data is the same, the real data is more effective than the simulated data. Multi-condition training is still useful for adapter training. Furthermore, integrating adapters into speech enhancement-based ASR systems yields substantial improvements.
論文抄録(英)
内容記述タイプ Other
内容記述 Adapting an automatic speech recognition (ASR) system to unseen noise environments is crucial. Integrating adapters into neural networks has emerged as a potent technique for transfer learning. This study thoroughly investigates adapter-based ASR adaptation in noisy environments. We conducted experiments using the CHiME-4 dataset. The results show that inserting the adapter in the shallow layer yields superior effectiveness, and there is no significant difference between adapting solely within the shallow layer and adapting across all layers. The simulated data helps the system to improve its performance under real noise conditions. Nonetheless, when the amount of data is the same, the real data is more effective than the simulated data. Multi-condition training is still useful for adapter training. Furthermore, integrating adapters into speech enhancement-based ASR systems yields substantial improvements.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10442647
書誌情報 研究報告音声言語情報処理(SLP)

巻 2023-SLP-149, 号 19, p. 1-6, 発行日 2023-11-25
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8663
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:48:53.072540
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3