ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 自然言語処理(NL)
  3. 2023
  4. 2023-NL-258

Enhancing Dysarthric Speech Recognition with Auxiliary Feature Fusion Module: Exploring Articulatory-related Features from Foundation Models

https://ipsj.ixsq.nii.ac.jp/records/231272
https://ipsj.ixsq.nii.ac.jp/records/231272
8f8b5a52-b1cd-4111-8f3c-d1ebe47a1f8d
名前 / ファイル ライセンス アクション
IPSJ-NL23258014.pdf IPSJ-NL23258014.pdf (1.7 MB)
Copyright (c) 2023 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
NL:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-25
タイトル
タイトル Enhancing Dysarthric Speech Recognition with Auxiliary Feature Fusion Module: Exploring Articulatory-related Features from Foundation Models
タイトル
言語 en
タイトル Enhancing Dysarthric Speech Recognition with Auxiliary Feature Fusion Module: Exploring Articulatory-related Features from Foundation Models
言語
言語 eng
キーワード
主題Scheme Other
主題 ポスター
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University/Graduate School of Engineering, The University of Tokyo
著者所属
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University
著者所属
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University
著者所属
Graduate School of Engineering, The University of Tokyo
著者所属
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University
著者所属(英)
en
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University / Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University
著者所属(英)
en
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University
著者所属(英)
en
Graduate School of Engineering, The University of Tokyo
著者所属(英)
en
Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University
著者名 Yuqin, Lin

× Yuqin, Lin

Yuqin, Lin

Search repository
Longbiao, Wang

× Longbiao, Wang

Longbiao, Wang

Search repository
Jianwu, Dang

× Jianwu, Dang

Jianwu, Dang

Search repository
Nobuaki, Minematsu

× Nobuaki, Minematsu

Nobuaki, Minematsu

Search repository
著者名(英) Yuqin, Lin

× Yuqin, Lin

en Yuqin, Lin

Search repository
Longbiao, Wang

× Longbiao, Wang

en Longbiao, Wang

Search repository
Jianwu, Dang

× Jianwu, Dang

en Jianwu, Dang

Search repository
Nobuaki, Minematsu

× Nobuaki, Minematsu

en Nobuaki, Minematsu

Search repository
論文抄録
内容記述タイプ Other
内容記述 Addressing dysarthric speech variability in Automatic Speech Recognition (ASR) is crucial for improving human-computer interactions for everyone. This paper proposes the Auxiliary Features Fusion (AFFusion) module, which leverages phonetic and articulatory-related features from models like wav2vec to compensate for distorted acoustics in dysarthric ASR. Experimental results using AFFusion with various feature models demonstrate its effectiveness on dysarthric databases. Interestingly, the analysis suggests that AFFusion shares similarities with human speech perception processes, offering potential insights into addressing fuzzy recognition in dysarthric ASR based on the motor theory of speech perception.
論文抄録(英)
内容記述タイプ Other
内容記述 Addressing dysarthric speech variability in Automatic Speech Recognition (ASR) is crucial for improving human-computer interactions for everyone. This paper proposes the Auxiliary Features Fusion (AFFusion) module, which leverages phonetic and articulatory-related features from models like wav2vec to compensate for distorted acoustics in dysarthric ASR. Experimental results using AFFusion with various feature models demonstrate its effectiveness on dysarthric databases. Interestingly, the analysis suggests that AFFusion shares similarities with human speech perception processes, offering potential insights into addressing fuzzy recognition in dysarthric ASR based on the motor theory of speech perception.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10115061
書誌情報 研究報告自然言語処理(NL)

巻 2023-NL-258, 号 14, p. 1-6, 発行日 2023-11-25
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8779
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:49:42.689998
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3