ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータと教育(CE)
  3. 2023
  4. 2023-CE-172

A Comparative Analysis of Large Language Models for Contextually Relevant Question Generation in Education

https://ipsj.ixsq.nii.ac.jp/records/231227
https://ipsj.ixsq.nii.ac.jp/records/231227
4fa013ec-a63f-47ea-96f7-a647c91952ec
名前 / ファイル ライセンス アクション
IPSJ-CE23172025.pdf IPSJ-CE23172025.pdf (1.3 MB)
 2025年11月25日からダウンロード可能です。
Copyright (c) 2023 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CE:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2023-11-25
タイトル
タイトル A Comparative Analysis of Large Language Models for Contextually Relevant Question Generation in Education
タイトル
言語 en
タイトル A Comparative Analysis of Large Language Models for Contextually Relevant Question Generation in Education
言語
言語 eng
キーワード
主題Scheme Other
主題 CLE一般セッション(2)
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属
Data-Driven Innovation Initiative, Kyushu University
著者所属
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Faculty of Information Science and Electrical Engineering, Kyushu University
著者所属(英)
en
Data-Driven Innovation Initiative, Kyushu University
著者所属(英)
en
Faculty of Information Science and Electrical Engineering, Kyushu University
著者名 Lodovico, Molina Ivo

× Lodovico, Molina Ivo

Lodovico, Molina Ivo

Search repository
Tsubasa, Minematsu

× Tsubasa, Minematsu

Tsubasa, Minematsu

Search repository
Atsushi, Shimada

× Atsushi, Shimada

Atsushi, Shimada

Search repository
著者名(英) Lodovico, Molina Ivo

× Lodovico, Molina Ivo

en Lodovico, Molina Ivo

Search repository
Tsubasa, Minematsu

× Tsubasa, Minematsu

en Tsubasa, Minematsu

Search repository
Atsushi, Shimada

× Atsushi, Shimada

en Atsushi, Shimada

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper explores the potential of large language models (LLMs) for Automatic Question Generation in educational contexts. We compare three models - GPT-3.5 Turbo, Flan T5 XXL, and Llama 2-Chat 13B - on their ability to generate relevant questions from university slide text without finetuning. Questions were generated in a two-step pipeline: first, answer phrases were extracted from slides using Llama 2-Chat 13B; then, questions were generated for each answer by the three models. To evaluate question quality, a survey was conducted where students rated 144 questions across five metrics: clarity, relevance, difficulty, slide relation, and answer correctness. Results showed GPT-3.5 and Llama 2-Chat 13B outperformed Flan T5 XXL overall, with lower scores on clarity and answer-question alignment for Flan T5 XXL. GPT-3.5 excelled at tailoring questions to match input answers. While isolated questions seemed coherent for all models, Llama 2-Chat 13B and Flan T5 XXL showed weaker alignment between generated questions and answers compared to GPT-3.5. This research analyzes the capacity of LLMs for Automatic Question Generation to enhance education, particularly GPT-3.5 and Llama 2-Chat 13B, without any finetuning. Further work is needed to optimize models and methodologies to continually improve question relevance and quality.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper explores the potential of large language models (LLMs) for Automatic Question Generation in educational contexts. We compare three models - GPT-3.5 Turbo, Flan T5 XXL, and Llama 2-Chat 13B - on their ability to generate relevant questions from university slide text without finetuning. Questions were generated in a two-step pipeline: first, answer phrases were extracted from slides using Llama 2-Chat 13B; then, questions were generated for each answer by the three models. To evaluate question quality, a survey was conducted where students rated 144 questions across five metrics: clarity, relevance, difficulty, slide relation, and answer correctness. Results showed GPT-3.5 and Llama 2-Chat 13B outperformed Flan T5 XXL overall, with lower scores on clarity and answer-question alignment for Flan T5 XXL. GPT-3.5 excelled at tailoring questions to match input answers. While isolated questions seemed coherent for all models, Llama 2-Chat 13B and Flan T5 XXL showed weaker alignment between generated questions and answers compared to GPT-3.5. This research analyzes the capacity of LLMs for Automatic Question Generation to enhance education, particularly GPT-3.5 and Llama 2-Chat 13B, without any finetuning. Further work is needed to optimize models and methodologies to continually improve question relevance and quality.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10096193
書誌情報 研究報告コンピュータと教育(CE)

巻 2023-CE-172, 号 25, p. 1-8, 発行日 2023-11-25
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8930
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 10:50:38.015122
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3