ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 全国大会
  2. 85回
  3. 人工知能と認知科学

複数解像度で画像を生成可能な拡散確率モデル

https://ipsj.ixsq.nii.ac.jp/records/229863
https://ipsj.ixsq.nii.ac.jp/records/229863
15903e78-f242-44d8-b7ec-1b492ea3d344
名前 / ファイル ライセンス アクション
IPSJ-Z85-2P-08.pdf IPSJ-Z85-2P-08.pdf (808.1 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
Item type National Convention(1)
公開日 2023-02-16
タイトル
タイトル 複数解像度で画像を生成可能な拡散確率モデル
言語
言語 jpn
キーワード
主題Scheme Other
主題 人工知能と認知科学
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
早大
著者所属
早大
著者所属
東大
著者所属
早大
著者名 荒川, 深映

× 荒川, 深映

荒川, 深映

Search repository
綱島, 秀樹

× 綱島, 秀樹

綱島, 秀樹

Search repository
堀田, 大地

× 堀田, 大地

堀田, 大地

Search repository
森島, 繁生

× 森島, 繁生

森島, 繁生

Search repository
論文抄録
内容記述タイプ Other
内容記述 拡散モデルは画像生成において最先端の性能を示している.一方で,固定した解像度で訓練された拡散モデルは推論時に解像度を変更すると,画像全体の構造やテクスチャが崩壊し,低品質となる問題を持つ.そこで本研究では,複数解像度での高品質な画像生成を可能とする学習法を提案する.学習時に複数解像度の画像から切り抜いたパッチを用いることによって,画像全体の構造やディテールを学習し,様々な解像度での生成を可能にする.この学習法によって,推論時に学習時よりも高解像度の画像を生成可能であることに加えて,学習に低解像度のパッチを用いることが計算コストの削減に繋がることを明らかにした.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00349328
書誌情報 第85回全国大会講演論文集

巻 2023, 号 1, p. 125-126, 発行日 2023-02-16
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:23:12.244143
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3