ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 全国大会
  2. 85回
  3. ソフトウェア科学・工学

正則化最小二乗法を用いた線形基底関数モデルに対する予測アルゴリズム

https://ipsj.ixsq.nii.ac.jp/records/229711
https://ipsj.ixsq.nii.ac.jp/records/229711
e70b2b1b-b8fb-4a15-aa61-0190bfe2cebc
名前 / ファイル ライセンス アクション
IPSJ-Z85-4M-03.pdf IPSJ-Z85-4M-03.pdf (514.2 kB)
Copyright (c) 2023 by the Information Processing Society of Japan
Item type National Convention(1)
公開日 2023-02-16
タイトル
タイトル 正則化最小二乗法を用いた線形基底関数モデルに対する予測アルゴリズム
言語
言語 jpn
キーワード
主題Scheme Other
主題 ソフトウェア科学・工学
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
早大
著者所属
早大
著者名 倉持, 七海

× 倉持, 七海

倉持, 七海

Search repository
須子, 統太

× 須子, 統太

須子, 統太

Search repository
論文抄録
内容記述タイプ Other
内容記述 機械学習における予測モデルでは,ニューラルネットワークのように表現力の高い複雑な関数系を仮定してデータから学習するアプローチが主流である.しかし,予測精度の高いモデルを学習するには大量のサンプルが必要であったり,パラメータのチューニングが難しいなどの問題がある.本研究では,正則化最小二乗法を利用することで,様々な基底関数を動的に選択しながら予想精度の高いモデルを構築するアルゴリズムを提案する.そのもとで,いくつかの実データを用いて提案アルゴリズムの評価を行う.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00349328
書誌情報 第85回全国大会講演論文集

巻 2023, 号 1, p. 367-368, 発行日 2023-02-16
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 11:27:01.021740
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3