Item type |
National Convention(1) |
公開日 |
2022-02-17 |
タイトル |
|
|
タイトル |
Towards a Delay Risk Analysis and Prediction System on Road Construction Projects in Zimbabwe |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
人工知能と認知科学 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_5794 |
|
資源タイプ |
conference paper |
著者所属 |
|
|
|
名工大 |
著者所属 |
|
|
|
名工大 |
著者所属 |
|
|
|
名工大 |
著者所属 |
|
|
|
名工大 |
著者名 |
フロランス, ガンディザ
ヘルトン, ヤウォヴィ
真人, 菊地
大囿, 忠親
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Projects delays are among the major challenges experienced in construction sector globally, attributed the sector’s complexity and unpredictable nature. As such, adopting Artificial Intelligence techniques which have evidenced its capacity to solve such vigorous, ambiguous and intricate tasks within the construction sector is imperative. The goal of this study is to develop a machine learning model that can accurately analyze and predict delay risk in Zimbabwe’s road construction projects utilizing objective data sources. Ultimately, the presented research leverages the power of machine learning to facilitate a robust technique for project delay prediction that contributes to construction project management monitoring and sustainability. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN00349328 |
書誌情報 |
第84回全国大会講演論文集
巻 2022,
号 1,
p. 359-360,
発行日 2022-02-17
|
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |