ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア通信と分散処理ワークショップ
  4. 2022

Vehicle Trajectory Data Reduction in Maneuver Coordination Message by Polynomial Approximation

https://ipsj.ixsq.nii.ac.jp/records/220449
https://ipsj.ixsq.nii.ac.jp/records/220449
d1ce2959-e74a-4d74-ada3-574ffe973299
名前 / ファイル ライセンス アクション
IPSJ-DPSWS2022017.pdf IPSJ-DPSWS2022017.pdf (769.1 kB)
©2022 Information Processing Society Japan
オープンアクセス
Item type Symposium(1)
公開日 2022-10-17
タイトル
タイトル Vehicle Trajectory Data Reduction in Maneuver Coordination Message by Polynomial Approximation
言語
言語 eng
キーワード
主題Scheme Other
主題 manuever cordination, trajectory data reduction
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
慶應義塾大学理工学研究科情報工学専修
著者所属
慶應義塾大学理工学部情報工学科
著者所属(英)
en
Dept. of Information and Computer Science, Keio University
著者所属(英)
en
Dept. of Information and Computer Science, Keio University
著者名 國部, 匡志 重野 寛

× 國部, 匡志 重野 寛

國部, 匡志 重野 寛

Search repository
著者名(英) Masashi, Kunibe

× Masashi, Kunibe

en Masashi, Kunibe

Search repository
Hiroshi, Shigeno

× Hiroshi, Shigeno

en Hiroshi, Shigeno

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this paper, we propose the vehicle trajectory data reduction in Maneuver Coordination Messages (MCMs) by polynomial approximation. For the traffic safety and efficiency, it is assumed that Connected and Automated Vehicles (CAVs) exchange their planned trajectories and desired trajectories among them with MCMs by vehicle-to-everything transmission.
However, the size of MCM becomes large as the number of waypoints in the trajectory increases. Therefore, the MCM transmission has the potential to cause wireless congestion.
To mitigate the wireless congestion, in the proposed method, the CAVs reduce the MCM size by approximating their trajectories by polynomials. Specifically, they include the polynomial coefficients into MCMs instead of their trajectories. They approximate their trajectories by the polynomial approximation such that the position errors between the original trajectories and approximated ones become less than the acceptable error. In the simulation, we have evaluated the MCM size by changing the trajectory length, number of polynomial coefficients, and vehicle heading based on the kinematic bicycle model. The simulation result shows that the proposed method reduces the MCM size by 59.47% compared with the original MCM size even when the trajectory is frequently curved.
書誌情報 第30回マルチメディア通信と分散処理ワークショップ論文集

p. 119-125, 発行日 2022-10-17
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:34:03.131562
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3