ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2022
  4. 2022-BIO-71

Network-based pathogenicity prediction for genomic variants

https://ipsj.ixsq.nii.ac.jp/records/220086
https://ipsj.ixsq.nii.ac.jp/records/220086
91d6b07f-d5c9-4f83-843c-6f50b663cd2b
名前 / ファイル ライセンス アクション
IPSJ-BIO22071003.pdf IPSJ-BIO22071003.pdf (370.2 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-09-05
タイトル
タイトル Network-based pathogenicity prediction for genomic variants
タイトル
言語 en
タイトル Network-based pathogenicity prediction for genomic variants
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Kyoto University
著者所属
Kyoto University
著者所属
Kyoto University
著者所属
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者所属(英)
en
Kyoto University
著者名 Mayumi, Kamada

× Mayumi, Kamada

Mayumi, Kamada

Search repository
Atsuko, Takagi

× Atsuko, Takagi

Atsuko, Takagi

Search repository
Ryosuke, Kojima

× Ryosuke, Kojima

Ryosuke, Kojima

Search repository
Yasushi, Okuno

× Yasushi, Okuno

Yasushi, Okuno

Search repository
著者名(英) Mayumi, Kamada

× Mayumi, Kamada

en Mayumi, Kamada

Search repository
Atsuko, Takagi

× Atsuko, Takagi

en Atsuko, Takagi

Search repository
Ryosuke, Kojima

× Ryosuke, Kojima

en Ryosuke, Kojima

Search repository
Yasushi, Okuno

× Yasushi, Okuno

en Yasushi, Okuno

Search repository
論文抄録
内容記述タイプ Other
内容記述 Genomic medicine is expected to play a key role in realizing precision medicine. On the other hand, only a few percent of the huge number of genomic variants detected by genome analysis have clear clinical significance. Many computational methods have been developed to predict the pathogenicity of variants. Although the mechanisms of diseases involve complex biomolecular interactions, conventional methods have not been able to consider the molecular relationship. In this study, we developed PathoGN, which represents the molecular network as graphs and predicts the pathogenicity of variants using Graph Convolutional Networks. In performance evaluation using benchmark sets, PathoGN outperformed existing methods. Results of evaluation with ClinVar, a database of disease-related variants, PathoGN was shown to accurately predict the current label of a variant whose significance was unknown in the past. These results suggest the usefulness of considering biological networks.
論文抄録(英)
内容記述タイプ Other
内容記述 Genomic medicine is expected to play a key role in realizing precision medicine. On the other hand, only a few percent of the huge number of genomic variants detected by genome analysis have clear clinical significance. Many computational methods have been developed to predict the pathogenicity of variants. Although the mechanisms of diseases involve complex biomolecular interactions, conventional methods have not been able to consider the molecular relationship. In this study, we developed PathoGN, which represents the molecular network as graphs and predicts the pathogenicity of variants using Graph Convolutional Networks. In performance evaluation using benchmark sets, PathoGN outperformed existing methods. Results of evaluation with ClinVar, a database of disease-related variants, PathoGN was shown to accurately predict the current label of a variant whose significance was unknown in the past. These results suggest the usefulness of considering biological networks.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2022-BIO-71, 号 3, p. 1-2, 発行日 2022-09-05
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8590
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:40:23.498613
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3