ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2022

A study on estimating the accurate head IMU motion from Video

https://ipsj.ixsq.nii.ac.jp/records/219703
https://ipsj.ixsq.nii.ac.jp/records/219703
6572b90c-4498-4c97-8ca6-1ebd448421f3
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2022129.pdf IPSJ-DICOMO2022129.pdf (1.5 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2022-07-06
タイトル
タイトル A study on estimating the accurate head IMU motion from Video
タイトル
言語 en
タイトル A study on estimating the accurate head IMU motion from Video
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
九州大学
著者所属
九州大学
著者所属
公立はこだて未来大学
著者所属
九州大学
著者所属
九州大学
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者所属(英)
en
Future University Hakodate
著者所属(英)
en
Kyushu University
著者所属(英)
en
Kyushu University
著者名 MinYen, Lu

× MinYen, Lu

MinYen, Lu

Search repository
ChenHao, Chen

× ChenHao, Chen

ChenHao, Chen

Search repository
石田, 繁巳

× 石田, 繁巳

石田, 繁巳

Search repository
中村, 優吾

× 中村, 優吾

中村, 優吾

Search repository
荒川, 豊

× 荒川, 豊

荒川, 豊

Search repository
著者名(英) Minyen, Lu

× Minyen, Lu

en Minyen, Lu

Search repository
Chenhao, Chen

× Chenhao, Chen

en Chenhao, Chen

Search repository
Shigemi, Ishida

× Shigemi, Ishida

en Shigemi, Ishida

Search repository
Yugo, Nakamura

× Yugo, Nakamura

en Yugo, Nakamura

Search repository
Yutaka, Arakawa

× Yutaka, Arakawa

en Yutaka, Arakawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Inertial measurement unit (IMU) data have been utilized in human activity recognition (HAR). In recent studies, deep learning recognition for IMU data has caught researchers' attention for the capability of automatic feature extraction and accurate prediction. On the other hand, the challenge of data collection and labeling discourages researchers to step into it. IMUTube provides a solution by building up a pipeline to estimate virtual IMU data from YouTube videos for body motion. For head motion data, several methods, such as OpenFace 2.0 provide the function of predicting facial landmarks and calculating head facing angle from video. However, to our knowledge, there is no study focusing on estimating IMU data from human head motion. In our previous work DisCaaS, we created the M3B dataset which contains IMU and 360-degree video data from the meeting. We exploit head motion data extraction models to predict participants' nodding and speaking gestures. In order to further improve the performance of nodding recognition, in this paper, we are interested in understanding the quality of estimated gyro data calculated from these existing head motion models. We investigate the difference between the motion data estimated from video and those measured by a 9-axis sensor not only in the time domain but also in the frequency domain. Finally, we discuss the future direction of the result.
論文抄録(英)
内容記述タイプ Other
内容記述 Inertial measurement unit (IMU) data have been utilized in human activity recognition (HAR). In recent studies, deep learning recognition for IMU data has caught researchers' attention for the capability of automatic feature extraction and accurate prediction. On the other hand, the challenge of data collection and labeling discourages researchers to step into it. IMUTube provides a solution by building up a pipeline to estimate virtual IMU data from YouTube videos for body motion. For head motion data, several methods, such as OpenFace 2.0 provide the function of predicting facial landmarks and calculating head facing angle from video. However, to our knowledge, there is no study focusing on estimating IMU data from human head motion. In our previous work DisCaaS, we created the M3B dataset which contains IMU and 360-degree video data from the meeting. We exploit head motion data extraction models to predict participants' nodding and speaking gestures. In order to further improve the performance of nodding recognition, in this paper, we are interested in understanding the quality of estimated gyro data calculated from these existing head motion models. We investigate the difference between the motion data estimated from video and those measured by a 9-axis sensor not only in the time domain but also in the frequency domain. Finally, we discuss the future direction of the result.
書誌情報 マルチメディア,分散,協調とモバイルシンポジウム2022論文集

巻 2022, p. 918-923, 発行日 2022-07-06
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 14:48:20.232966
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3