ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. バイオ情報学(BIO)
  3. 2022
  4. 2022-BIO-70

Learning DAGs Graph Model from Sparse Inverse Covariance

https://ipsj.ixsq.nii.ac.jp/records/218655
https://ipsj.ixsq.nii.ac.jp/records/218655
6cc88b03-9ba1-4230-b390-1591edad9262
名前 / ファイル ライセンス アクション
IPSJ-BIO22070025.pdf IPSJ-BIO22070025.pdf (902.6 kB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
BIO:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-06-20
タイトル
タイトル Learning DAGs Graph Model from Sparse Inverse Covariance
タイトル
言語 en
タイトル Learning DAGs Graph Model from Sparse Inverse Covariance
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Information Science and Technology, The University of Tokyo
著者所属
Department of Information Science and Technology, The University of Tokyo
著者所属(英)
en
Department of Information Science and Technology, The University of Tokyo
著者所属(英)
en
Department of Information Science and Technology, The University of Tokyo
著者名 Ziyu, Guo

× Ziyu, Guo

Ziyu, Guo

Search repository
Shin, Matsushima

× Shin, Matsushima

Shin, Matsushima

Search repository
著者名(英) Ziyu, Guo

× Ziyu, Guo

en Ziyu, Guo

Search repository
Shin, Matsushima

× Shin, Matsushima

en Shin, Matsushima

Search repository
論文抄録
内容記述タイプ Other
内容記述 Learning DAG-like causal graphs derived from structural equation models (SEMs) using data without intervention is one of the most important tasks in causal inference. However, in the real world, given observed data, the SEMs might be non-identifiable which makes the problem become hard. Recently, some studies have focused on inference on both identifiable and non-identifiable SEMs. These studies perform exhaustive search on all possible causal orders or set constraints on DAG. In this paper, we focus on learning SEMs without identifiability and propose an approach that estimates DAG computed by Cholesky decomposition of permutated precision matrix with BIC criterion. We perform graphical lasso to estimate sparse inverse covariance, which also controls the sparsity of the graph within l1 norm. Besides, we perform exhaustive search on all possible causal structures and use BIC criterion to construct the estimated DAG. Our experiments validate the performance of our approach on the SEMs without identifiability.
論文抄録(英)
内容記述タイプ Other
内容記述 Learning DAG-like causal graphs derived from structural equation models (SEMs) using data without intervention is one of the most important tasks in causal inference. However, in the real world, given observed data, the SEMs might be non-identifiable which makes the problem become hard. Recently, some studies have focused on inference on both identifiable and non-identifiable SEMs. These studies perform exhaustive search on all possible causal orders or set constraints on DAG. In this paper, we focus on learning SEMs without identifiability and propose an approach that estimates DAG computed by Cholesky decomposition of permutated precision matrix with BIC criterion. We perform graphical lasso to estimate sparse inverse covariance, which also controls the sparsity of the graph within l1 norm. Besides, we perform exhaustive search on all possible causal structures and use BIC criterion to construct the estimated DAG. Our experiments validate the performance of our approach on the SEMs without identifiability.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12055912
書誌情報 研究報告バイオ情報学(BIO)

巻 2022-BIO-70, 号 25, p. 1-6, 発行日 2022-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8590
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:05:35.139450
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3