ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2022
  4. 2022-MPS-138

A pseudo node based graph convolution network for emotion perception from gait

https://ipsj.ixsq.nii.ac.jp/records/218589
https://ipsj.ixsq.nii.ac.jp/records/218589
afd9f6b8-22d2-4aca-9758-5a753fa922ed
名前 / ファイル ライセンス アクション
IPSJ-MPS22138019.pdf IPSJ-MPS22138019.pdf (2.0 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
MPS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-06-20
タイトル
タイトル A pseudo node based graph convolution network for emotion perception from gait
タイトル
言語 en
タイトル A pseudo node based graph convolution network for emotion perception from gait
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Ritsumeikan University
著者所属
Ritsumeikan University
著者所属
Fujita Health University
著者所属
Zhejiang university
著者所属
Ritsumeikan University
著者所属(英)
en
Ritsumeikan University
著者所属(英)
en
Ritsumeikan University
著者所属(英)
en
Fujita Health University
著者所属(英)
en
Zhejiang university
著者所属(英)
en
Ritsumeikan University
著者名 Shurong, Chai

× Shurong, Chai

Shurong, Chai

Search repository
Jiaqing, Liu

× Jiaqing, Liu

Jiaqing, Liu

Search repository
Tomoko, Tateyama

× Tomoko, Tateyama

Tomoko, Tateyama

Search repository
Lanfen, Lin

× Lanfen, Lin

Lanfen, Lin

Search repository
Yen-Wei, Chen

× Yen-Wei, Chen

Yen-Wei, Chen

Search repository
著者名(英) Shurong, Chai

× Shurong, Chai

en Shurong, Chai

Search repository
Jiaqing, Liu

× Jiaqing, Liu

en Jiaqing, Liu

Search repository
Tomoko, Tateyama

× Tomoko, Tateyama

en Tomoko, Tateyama

Search repository
Lanfen, Lin

× Lanfen, Lin

en Lanfen, Lin

Search repository
Yen-Wei, Chen

× Yen-Wei, Chen

en Yen-Wei, Chen

Search repository
論文抄録
内容記述タイプ Other
内容記述 Recently, emotion recognition task has attracted extensive attention in the field of human-computer interaction. With the advancement of Graph Convolutional Networks (GCNs), human gait can be effectively recognized in more complex backgrounds. According to the anatomy of the human body, central torso joints play a key role in GCNs-based human gait recognition systems, instead of the body’s marginal limb joints. As a result, there is a major issue of receptive field imbalance. In this study, we propose a method for perceiving emotions based on the human gait skeleton. We present a novel pseudo node strategy that connects all natural human body joints to alleviate the receptive field imbalance problem. The result of the experiment show that our proposed method outperforms than existing skeleton-based methods.
論文抄録(英)
内容記述タイプ Other
内容記述 Recently, emotion recognition task has attracted extensive attention in the field of human-computer interaction. With the advancement of Graph Convolutional Networks (GCNs), human gait can be effectively recognized in more complex backgrounds. According to the anatomy of the human body, central torso joints play a key role in GCNs-based human gait recognition systems, instead of the body’s marginal limb joints. As a result, there is a major issue of receptive field imbalance. In this study, we propose a method for perceiving emotions based on the human gait skeleton. We present a novel pseudo node strategy that connects all natural human body joints to alleviate the receptive field imbalance problem. The result of the experiment show that our proposed method outperforms than existing skeleton-based methods.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2022-MPS-138, 号 19, p. 1-3, 発行日 2022-06-20
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:07:01.010131
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3