ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 量子ソフトウェア(QS)
  3. 2022
  4. 2022-QS-005

Cost function gradient for general ansatz in variational quantum algorithm

https://ipsj.ixsq.nii.ac.jp/records/217651
https://ipsj.ixsq.nii.ac.jp/records/217651
dc4f6608-ae6b-4287-9897-6806e36953ff
名前 / ファイル ライセンス アクション
IPSJ-QS22005029.pdf IPSJ-QS22005029.pdf (791.5 kB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2022-03-17
タイトル
タイトル Cost function gradient for general ansatz in variational quantum algorithm
タイトル
言語 en
タイトル Cost function gradient for general ansatz in variational quantum algorithm
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Physics, The University of Tokyo
著者所属
International Center for Elementary Particle Physics (ICEPP), The University of Tokyo
著者所属(英)
en
Department of Physics, The University of Tokyo
著者所属(英)
en
International Center for Elementary Particle Physics (ICEPP), The University of Tokyo
著者名 Ryunosuke, Okubo

× Ryunosuke, Okubo

Ryunosuke, Okubo

Search repository
Lento, Nagano

× Lento, Nagano

Lento, Nagano

Search repository
著者名(英) Ryunosuke, Okubo

× Ryunosuke, Okubo

en Ryunosuke, Okubo

Search repository
Lento, Nagano

× Lento, Nagano

en Lento, Nagano

Search repository
論文抄録
内容記述タイプ Other
内容記述 Variational quantum algorithms (VQAs) are expected to be promising strategies to achieve quantum advantages in the near future. However, gradients of some VQA cost functions vanish exponentially with the number of qubits, which requires exponentially large resources for optimizing them. This phenomenon is the so-called barren plateau problem and has been studied in previous works for certain types of ansatzes. We extend the previous works to a more general type of ansatz. Specifically, we calculate the second moment of a cost function gradient for a general ansatz, assuming that it is an unitary 2-design. We also evaluate the second moment without this assumption, which leads to a relation between a metric to quantify ansatz expressibilities and the second moment. This relation implies cost function landscapes for more expressive ansatzes become flatter. Our results hold independently of ansatz structures, so they are applicable to analysis of scalabilities of various VQAs.
論文抄録(英)
内容記述タイプ Other
内容記述 Variational quantum algorithms (VQAs) are expected to be promising strategies to achieve quantum advantages in the near future. However, gradients of some VQA cost functions vanish exponentially with the number of qubits, which requires exponentially large resources for optimizing them. This phenomenon is the so-called barren plateau problem and has been studied in previous works for certain types of ansatzes. We extend the previous works to a more general type of ansatz. Specifically, we calculate the second moment of a cost function gradient for a general ansatz, assuming that it is an unitary 2-design. We also evaluate the second moment without this assumption, which leads to a relation between a metric to quantify ansatz expressibilities and the second moment. This relation implies cost function landscapes for more expressive ansatzes become flatter. Our results hold independently of ansatz structures, so they are applicable to analysis of scalabilities of various VQAs.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12894105
書誌情報 量子ソフトウェア(QS)

巻 2022-QS-5, 号 29, p. 1-8, 発行日 2022-03-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 2435-6492
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:25:37.189648
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3